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SUMMARY

In this study we have achieved the following:

(i) Theoretical Aspect

Using the plasma theory, we study the interaction between the high

frequency waves and magnetohydrodynamic (MHD) in which a set of coupling

equations resulted. On the basis of this formalism, we examined the

modulation instabilities by an electromagnetic soliton in a current sheet

and showed that there is a resistive instability, which eventually turns

into an eruptive instability at the onset of the magnetic field

reconnection. This mechanism could be used to explain the onset of a solar

flare.

(ii) Experimental Aspect

In order to have better measurements for vector magnetic fields with

high resolution on the solar surface, we have examined the possibility of

increasing the present state-of-the-art optics so we may use it to improve

the design and fabrication of a new space-borne solar vector magnetograph

as part of SAMEX (Solar Active Measurements Experiments). The detailed

study is presented in Section 3 of this report.

INTRODUCTION

The operations of satellites, space shuttle and space station for

communications, tracking, and survelliance can be interrupted, degraded,

or even endangered as a result of powerful explosions, that we know as solar

flares, on the surface of the Sun. These spectacular eruptions release

shock waves, hot plasma clouds, highly accelerated atomic nuclei, and

bursts of x-rays, untraviolet and visible-band electromagnetic radiation

into interplanetary space. When the path of propagation of these high-

energy emissions intersects our terrestrial environment it is impacted in

various ways that may produce deleterious effects on the operations of the
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systems mentioned above.

Observations have shown that physical conditions in the solar

atmosphere are strongly controled by the solar magnetic fields. The

appearance of solar flares, seen in enhanced emissions in H-alpha and

different lines in the ultraviolet and extreme-ultra-violet as well as in

white light observations, provides indications of prevalent nature and

importance of solar magnetic fields. Consequently, to understand the

physics of active regions, the storage and release of flare energy and

formtion of hot plasmas and mass ejections, it is imperative that we

understand and study the evolution of the Sun's magnetic field• To achieve

such as goal, we took both theoretical and experimental approaches. In the

theoretical aspect, we investigate the triggering mechanism of the solar

flares by studying the resistive and eruptive instability. This result is

presented in Section 2 of this report. In the experimental aspect, we

investigate the possibility of improving the resolution of the optics for

the space-borne solar magnetograph. The results are included in Section

•

2. THEORETICAL STUDY: Resistive and Eruptive Instability by

Pondermotive Force with High-Frequency Plasma Oscillation.

We investigated the subtle interaction between the magnetohydro-

dynamic (MHD) and high frequency plasma waves and we derived the coupling

equations for these phenomena. On the basis of this formalism, we examined

the modulation instabilities by an electromagnetic soliton in a current

sheet and showed that there is a resistive instability for constant-4

approximation (i.e., uniform magnetic field configuration), which

eventually turns into an eruptive instability at the onset of the magnetic

field reconnection.
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2.1 Introduction

It is knownthat the electromagnetic radiation from a plasma often is

trapped by the self-induced electromagnetic field and forms a soliton

(Krall and Trivepiece, 1978). It is also realized that the width of a two-

dimensional soliton is inversely proportional to its own strength.

Therefore, the existence of a strong electromagnetic soliton expected in

the thin currrent sheets (Li, 1985). Under these circumstances,the

current and solitons through the ponderomotive force, within the current

sheet will be intimately coupled; these interactions will cause the

instability of the magnetic field configuration in the current sheet.

Therefore, the electromagnetic soliton-induced instabilty within a

current sheet becomes an interesting and fundamental problem in space and

laboratory plasma.

In Section 2.2 of this investigation, we present the fundamental

coupling equations between magnetohydrodynamics (MHD) and high frequency

plasma and also discuss the fast and slow-time scale. In Section 2.3, the

electromagnetic soliton-induced resistive instability and in Section 2.4

we present the soliton-induced eruptive instability. We present a

numerical example concerning solar coronal plasma in Section 2.5 and

concluding remarks in Section 2.6.

2.2 Coupling Equations Between MHD and High Frequency Plasma

.he following equations govern a two component magnetized plamsa in a

gravitational field with two time-scale approximation.

ane

-- + V ' (neVe) = 0 ,

8t

_ne

--+ _ . (nivi) = 0 ,
at

(2.1)

(2.2)
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-%

aV e -% _ e _ i 4

-- + (v e . v)v e = -- (E + - v, x B)
at m e ¢

vP e

men e

-% -%

+ vei (Ve - vi),

(2.3)

-%

8V i -% -% -e -% I -% -% _Pi -%

+ (v i . v) v i =- (E +- v i x B) g
%t m ¢ min i

+ Vei (V i - re) (2.4)

1 aB

v X E = , (2.5)

C 8t

-%

1 aE 4_
-% -% -f

V X B = + -- (eneV e - enivi) , (2.6)
c %t c

4

v . B = 0 (2.7)

-%

Note these symbols and their meanings: n = the number density, v = the

velocity, P = the thermal pressure, E = the electric field, B = the magnetic

-$

field, g = the gravitational field, e = the electric charge, m = the mass of

of particle and Yel = collisional frequency between electron and ion. The

subscripts e and i indicate the electron and the ion respectively.

Based on the two time-scale approximation (Li, 1985), all the

quantities could be defined by

A = (ne, ni; Ve, vi; Pe, Pi; E, B)

= Af + A s (2.8)

It could be assumed that the assemble average value of fast time-scale

components over the slow time-scale vanishes;

<Af> = 0. (2.9)

Hence, in the slow time-scale region,the charge neutrality cond-

ition holds,

<nee - nie> = 0

Thus,

(2.1o)
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= n, (2 ii)me, s = hi, s -

where, the subscript s indicates the slow time-scale.

In the meantime, we shall employ this concept to analyze the set of

governing equations (2.1) through (2.7). Beginning at the electron

component of plasma, Eq. (2.1) the equation becomes,

a e [ e e1-- (n s + nf) + v . (n s + nf) (v, + vF) =
@t

o. (2.12)

From now on, the superscript indicates the species, and the subscript

indicates slow or fast time-scale. The assemble average of Eq. (2.12) over

the slow time-scale becomes

8 [ .e e_e 1
-- (ns) + v . nsv s + <nfvf> =
8t

o (2.13)

Eq. (2.13) subtracted from Eq. (2.12) becomes

e

(nf) + v .
8t

e e_ e e_ e e_ e

(nsv f + n_v_ + nfv s - <nfvf>) = O, (2.14)

From Eq. (2.3), we obtain the lowest order component equation for

the fast time-scale, as shown by

_e

8vf e

_ Ef

8t m e

If we use the relationship in Eq.

Eq. (2.14), the equation becomes

(2.1s)

(2.15) to analyze the terms in,

and

e_e

_. (nfvf)

e

-- (nf)
_t

e e

k nf vf k lelEf

e

_onf w me_

(2.16a)
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e •

°_ e

-- (nf)
_t

e

(2.16b)

where k and w are the wave numbers and the frequency respectively, and k d and

Wpe are the characteristic wave numbers chosen to be the width of the

current sheet and the electron plasma frequency respectively. The fast

time-scale component energy density is defined by

2

Ef

Wf = (2.16c)
4_n°T

• e

Corresponding to the slow time-scale fluid motion (i.e., collective

motion) ,

_e

Ivs I -<vTe

with VTe representing electron thermal speed.

(2.17)

Hence, in the case of

VTe

--<< i, (V# _ w/k)

v#

(2.18a)

and

-- << Wf ,

v_

Eq. (2.14) could be simplified as,

e

anf _ •

+ v • (nsvf) = 0.
at

By combining Eqs. (2.15)

(2.18b)

(2.19)

and (2.19), we obtain the following

approximate values:
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e lelEf _pe _-i/2

Vf Wf VTe , (2.20)

me_ u

e

n k I )I 12112Vf ~ W F << i, (2.21)

m s _o

Comparing Eqs. (2.17), (2.18b) (2.20) and (2.21) with the terms in Eq.

(2.13) yields,

e_e

nfvf

---Te

nsvs

k 2

wf [ =Jl
s

<< i, (2.22)

Thus, Eq. (2.13) becomes

a _e

-- (n,) + v . (n,vs) = 0.
at

(2.23)

For the ion, we may repeat our calculation by using Eqs. (2.12) through

(2.22) together with the condition of Eq. (2.18b), which leads to a weak

condition

k m e

<< Wf . (2.24)

Therefore, we obtained a similar expression of Eq.(2.19), as represented by

a i _i

-- nf + v . (nsvf) = 0,
at

From Eqs. (2.20) and (2.21), it could be shown, that

I:l (m lV F - __ W f VTe

and

nf/n s ~ W << i,

(2.25)

(2.26a)

(2.26b)
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Thus, we also found

8ns _ i
--+ V . (nsVs) = 0.
8t

(2.27)

By examining the electron and ion momentum equations according to Eq.

(2.8) together with the principles of the order of magnitude approximation,

we found the slow time-scale momentum equation for the electron as

a _e _e _e e [ 1 _e _ ] 1
--V s + (V s ' V) V s =- Es + --Vs X B s Vps
at m e [ c J men s

-_e _i _ -_e

- Vei (V s - Vs) + g + Fp . (2.28)

where Fp is the pondermotive force due to the high frequency plasma and MHD

interaction

_e 1 _e e _e _

Fp = - -- v <(vf)2> + __ <Vf X v X (¢e X Bs)>.
2 meC

and

..,e a __

Vf ----- _e (2.29)
at

with _e being an arbitrary function.

Similarly, we obtain the slow time-scale momentum equation

for ion,

--v s + (v s . v) v s =- [E, +- v s X B sJat m! c

1 i

vPs

mins

_e _i _ _i

+ Vei (V s - Vs) + g + Fp , (2.30)

where F
p is the pondermotive force corresponding to the ion,

Fp = - - v <(vf)2> <vf + _ x (¢i x Bs)>,
2 mic

with



-_i a -_

Vf = -- #i. (2.31)
at

From (2.6), the fast time-scale field equation can be derived as,

1 8El 4_e [ _ e e_ e e_ e e_ e
v X Bf - + -- nsv f + nfvf + nfv s - <nfvf>

c at c
3

-_i i-+i i-+i i-+ i |
- nsv f - nfv s - nfvf + <nfvf > J

(2.32)
It also can be shown that

e._e
nfvs

---Te

nsvf - < \ VTe/

<< 1

e-_e
nFVs

--_e

nsvf

e

nf

~ -- << 1 ,

ns

so that Eq. (2.31) becomes

1 8Ef 4_e _e
v x Bf _ + nsv f .

c at c

Further, using the followwng expressions,

8 _e e _, e _e

-- vf = -- Ef + -- vf x B s

at m e meC

and

meC a# e _

Bf = v x + v x (_e x Bs),
e at

we derive the following equation:

21 1 4we

x v x #e + -- _e + ns_e

c 2 c 2 m e

e I 1U X _7 X e X B s =

meC

i0

1

C2 e

(2.33)

(2.34)

(2.35)

(2.36)



where

WBe

a_e _e

----Vf
at

eB s

meC

(2.37)

By defining

p = ns(m i + me)

_i _e

(miVs + maY s)
u --

(m i + m e)

(2.38)

Using Eqs (2.32) and (2.27), we obtained

a

p + V . (pU) = 0 (2.39)

at

The LHS (left hand side) of Eqs (2.29) and (2.31) can be written

as

a

-- (m_nsVs _) + v . _m_ns_s_-s , _ = e, i.
at

where v s v s is the dyad of vector v s which is a second order

tensor.

Since,

pU u = msI e i e i1(meV s + miv s) (meVs + miv s)

in i + m e

.4i _e _i _e
= _ (nsm_vs_vs _) + mens[ v, (v s - v s) + v s

-.,i _e

(vs - v,) ],

in which,

..tO ..,e _i
3s = ens(Vs - Vs) (2.40)
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then,

_a a _ _ mems _o _o
nsm_v,_, = pU u + J

e2n 2
s

(2.41)

By introducing the pressure tensor at the center of the mass

system, we obtained

A__ .d .d .d d .d .d "_ -_ I
P = ns[m e <(v - u)(v - u) I > + m i <(v - u)(v - u) llfe fi

(2.42)

According to Eqs.(2.38) and (2.40), we have

1
.de -t 0 --_

V s Is = u ,

en s

di d m e 1 _0

v s ~ u Is •

m i ens

Incorporating these relationships into Eq.

._ .d .de d de

P = men s <(v - Vs)(v - Vs) I

-- I £e

(2.42) yields

> + min s <(v - vi)(V - vi) ]

(2.43)

mel me -Io-to J e J i me -Io-to
+ 1 + _-il 3s3s = Ps + Ps + 3s3snse 2 ns e2

(2.44)

Multiplying Eqs. (2.28) and (2.30) by men s respectively and then adding

them together results in

au (u.d _] 1Pl--+ ' = _ 30 d .d .ds x B s - _p + pg + Fp. (2.45)
)kat c

In deriving the above equation, we employed the relation Fp <<

de

Fp, SO that

1 [m if .de e

.d .d • .J, d

Fp = - -- pV <(Vf)2> + -- p<V£ X V X (@e X Bs)>, (2.46)
2 mic

In addition, we employed the general Ohm's law similar to those given by

12



Krall and Trivelpiece (1973) by combining Eqs. (2.28) and (2.30) and

multiplying the terms of e/m e and -e/m e respectively In case we neglected

the second order terms together with the pressure gradient, gravitational

force and pondermotive force, we get

_]s = Es + u x Bs/C (2.47)

where

= meVei/(nse 2) (2.48)

From Eq. (2.6), the slow time-scale current becomes

-t -_e -_ i e._e 14i

3s = ens(vs - vs) + e <nfvf - nfvf> (2.49)

According toEq. (2.26), the secondtermontheRHS (right hand side) of Eq.

(2.49) can be delected, thus

_0 we _i

]s = Is = ens (vs - vs) (2.50)

Therefore,

., 1 aE s 47[ "io 4_ ._o

v x B s = + -- ]s : -- Is
c at c c

(2.51)

We dropped the displacement current because ve i << _pe"

Finally, we derived a set of global coupling MHD equations

with pondermotive force,

a
-¢

-- p + v . (pu) = 0
at

(2.52)

p --
at

1 Fp
+ (u . v) u = - 3 x B - vp + pg +

c

(2.53)

_ x v x

1 a3# 1 4_e 2 a#

+ +

C at 3 c 2 mem i at

; e
- X +

C 2 @t 2 meC

v X v X (# X B) = 0

(2.54)
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with

e

Fp =_

mie

p <# x v x (¢ x B)>

Ohm 's law,

n3 = E + u x B/c

Maxwell equation,

4_

v X B=_3
c

-4

V X E =

1 aB

C at

v . B= 0

p v < >

2 m i

(2.55)

(2.56)

(2.57)

In the case of Wpe >> _Be; w >> _Be and#[ IB (i.e., the high frequency

amplitude parallel to the magnetic field), the Eq. (2.54) and (2.55) are

reduced to

1 a2ve 1 4_e 2

v x v x v e + + pv e = 0 (2.58)
c 2 8t _ c _ mem i

1 m e

Fp = p v <(vf)2>

2 m i

(2.59)

with energy equation, this set of equations form a closed set of governing

equations for the described problem.

2.3. Resistive Instability by Soliton

It has been recognized that one way to convert magnetic energy to kinetic

energy is through the resistive instabilities. Although the foundation of

this study has been made by Furth, Killeen and Rosenbluth (1963 thereafter

it will be referred to as FKR), Priest (1986), the analysis including the

14



pondermotive force is still lacking. Thus, we shall present a detailed

analysis for the resistive instability by soliton for a transverse plasma

wave in a slab geometry.

For convenience, we shall perform an incompressible analysis, which

can be justified in the most physical region (Furth, Killeen and

Rosenbluth, 1963; Shivamoggi, 1985). The motion of plasma is along thex-

direction and the unperturbed field is Boy in perpendicular to the x-

direction, and assuming that the gravitational effect is negligible, we

have the governing equation as follows:

8p
-- + v . (pu) = 0
%t

(3.1)

8u

p + (u . v) = -- (v x B) X B - 7p
4_

1 m e

2 m i

..,2

p _ <Vf>

(3.2)

8B nc 2

- v x (u x B) + v2B •

at 4_

1 82vf 1 4ze 2 p

X _ X Vf + + Vf = O,
c 2 at 2 c 2 m e m1

1 aB

(3.3)

(3.4)

-' (3.5)_ xE =
C at

4_
-_ -i (3.6)_ X B =--3 ,

C

. B = 0. (3.7)

Let us examine the steady state of this set of governing equations (i,e.,

Eqs. (3.1) through (3.2)) by setting

-. -' (3 8)
u o = 0 Po = ,o + p' (x)

o

15



B0 = B 0y(x) y = B tan h y.
(3.9)

Within the current sheet (i.e., Ixl = IX/Lsl << i), the magnetic field can be

approximated by

X A

B0 = B--y

Ls

(3.1o)

where L s represents the characteristic length of the current sheet.

Incorporating Eq. (3.8) into Eq. (3.2), we obtain

2

1 _ _ cs

(v x B o) x B o - _---Vp
4"Kp P

1 m e -,2

, _ <vf0> = 0, (3.11)

2 m i

is the lowest order sound speed,where c s

c s =

0

using Eqs.

p'Cx) =
0

(3.10) and (3.11), we obtain

<vf0> +-

c 2 m i 8_
s

(3.12)

(3.13)

In the case of,

8_

1 _ m e -,2
<< -- p -- <Vf o>

2 m i

(3.14)

we have,

1 P me -,2

pi _ <V£ o>.
c 2 2 m i

$

(3.1s)

As usual, the lowest order of fast oscillation speed of the electron can be

expressed by

_ eiW t (3.16)
Vf o = -- Vo

2

16



With w0 being the lowest order fast oscillation frequency. From Eq.

(3.16) ,it can be shown that

2 1

<Vfo> = _ ,_,lVo[2

2

, (3.17)

inv o

w0 _t

<< 1 (3.18)

and by neglecting the second order time derivatives, Eq. (3.4)

becomes

2i_o --- c2v2v0 - _0 Vo = 0.

@t m e

(3.19)

For the transverse plasma wave,

2 2
m

_0 - Wpe --

4"Ke 2 p

me mi

(3.20)

Employing Eqs. (3.15) and (3.17), Eq. (3.19) becomes

2

8V o C _pe me
i +  2;o + I;ol 2 "-- V0 = 0

0t 2_pe 8C 2 m i
s

, (3.21)

For convenience, let us take the complex conjugate of the Eq. (3.19) which

leads to a standard nonlinear Schrodinger equation.

av o 1 a2Vo

i -- = BlV012 V o
at 2 %X z

and where

V 0 = v 0(xlt ) y, X = -- X
C pe

_pe me

8c z m i
@

From Eq. (3.23) it is clearly indicated that these

(3.22)

(3.23)

nonlinear wave

17



interactions can be considered as wave packets and its wave function is

proportional to v 0. These wave packets can produce self-generated

potential, BJv0J 2 . Since B is positive, this self-generated potential has

attractive and repulsive characteristics. In other words, these

nonlinear wave packets can be self-centered and form a stable structure

called "soliton". For the steady state, the solution for this soliton can

be expressed by

° I °}iv o = v o sech _ v o X e , (3.24a)

B

# =--t + # 0
2

(3.24b)

By incorporating Eqs. (3.24a) and (3.17) into Eq. (3.15), we

obtain

 o(x) = _ -- __ U(v 0) 2 Sech 2
c 2 4

$

(3.25)

the width of the soliton being

_pe o

(3.26)

Hence, the width of the current sheet can be estimated from

Eq. (3.14) , such as,

0

aX = _ << _ L s

with v A being the Alfven speed.

Now, let us turn our attention to the perturbed state.

using Eqs. (3.1) through (3.3), we obtained,

(3.27)

By

18



PO

-%

au 1

= _ _p +

@t 4_

(7 x B) x B o +
4_

(vxB o) xB

1

_p_JVo I 2
2

(3.28)

-.D
aB 1

-% _ -%

-- = V X (U X B0) - -- nc2v x (v x B)

at 4_

(3.29)

ap -%
--=- (u . _ )Po
at

(3.30)

-% -%

v . U = 0 , v . B = 0 (3.31)

By taking all the perturbed quantities, such as

A(x,y,t) = A(x)eTte iky (3.32)

and substituting these perturbed quantities Eq. (3.32) and Eqs.

(3.28) through (3.30) together with Eq. (3.31) to eliminate By,

and Uy, we obtained a set of differential equations,

d [ du x
72 Po

dx dx
_ k 2 17 2

1 dP o dlVol 2

Po - -- _
4 dx dx

7

+

_C

2
B 0 (X) U

2 Y x

ik [ 4_= -- Boy(x)7 --
4_ nC 2

7B x = ikBoy(X)U x +- -k 2 Bx,
4_

1

Boy
d2B°Ydx2 ] Bx'

(3.33)

(3.34)

Introducing the following dimensionless quantities,

Sx

Boy(X ) = B F (X), _ = _----, Po = P Co(X),
B

(3.35a)

1 d ) 1 , 2
Go = -- .-- IVo12 - p 7H

4 dx P o

(3.35b)

_ TR

X = LsX , = = kLs, s = --

T h

(3.35C)
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2
4_L s

T R = , TH = 4_L s -- ,
_C 2

(3.35d)

and incorporating them into Eqs. (3.33) and (3.34) yields,

d24

dx 2
77RI

-- a24 1 + -- - i k
=2 )

7 R F U x , (3.36)

dIdUx [ s2-- G O-- eo -- = _2Ux %0 + 2 2

dx dx / _ 7 R

+ -- F 2

7T R

+ _ _2S2 F -- (3.37)

dx 2)

In order to seek solutions for this set of governing equations, we

shall divide them into two regions; the region outside the current sheet and

the region inside the current sheet.

i) Region outside current sheet.

In the case outside the current sheet, the n _ 0 in this region; thus,

s 2 _ m, under this circumstance, Eq. (3.37) becomes

I I i -i I i d2FGo + F 2 u x _ _ F

72T2 77 R kTR 7TR dx 2
R

Combining this experssion with Eq. (3.36), we get,

ikTRUx Go d24 4[=2 + --F1 --d2F]dx2)
F 77 R dx 2

On the other hand, Eq. (3.36) can be rewritten as

(3.38)

1 'd2_ 2 (3.39)
__ - = _ = 4 - ik-u x

_T R "Y

It is also true that 7T R _ _ outside the current sheet, thus

Eq. (3.39) reduces to
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1

z ik - FU x (3.4o)

Combining Eqs. (3.39) and (3.40), we obtained

dx 2 _ _2 + F dx 2 + = 0 ,
(3.4z)

Concerning the transverse plasma wave, G o is negligible outside the current

sheet because the incompressible characteristics are held outside the

current sheet; therefore Eq. (3.41) becomes

__d2 I id2F1dx 2 _ o_2 + -- 0,F dx _)

The solution for this equation is

(3.42)

_+ =

-- ( tanh

e -_x [i +

-- ( tanh

eex [1

, X > 0

, X < 0

The jump condition across the current sheet is

a' = -- = 2 - _ (3.43)

e _(0) +0 dx -o

1

ii) Region inside the current sheet

d2u× d0 o

Since, >> -- inside the current sheet, then Eq. (3.37)
dx 2 dx

becomes

fd2u 177 r -- _2 u =

_2s2 _dx2
1 G o )Id24

+ F -- _

G o

F
(3.44)

and Eq. (3.36) can be rewritten as
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1 d2 _ _2 _ _ + u

%'7 R 7TR

(3.45)

where

u=- ik Tr u x

Using Eqs. (3.8), (3.10), (3.25) and (3.35), we find,

d2F

- -- 0

F : X , dx 2

and

II:lxlI10Go = - -- _- V sech 2 -- - Vo
4 dx E o _ c 2 4

s

d x1-- sech 2 -- T

dx E o

o 2

(o1__ -- V O

16

T 2 -- 1 -

H dx

o 2 o 2 4

By noticing the form of Eqs. (3.8) and (3.25), we may choose

e o -_ i; thus Eqs. (3.44) and (3.45) become

_rR - _2u = (I + _) x __ - _ - _(_rR) x,
O. 2S 2 _,_X2 _dxZ

(3.47b)

(3.48)

I 1 I1 'd2,_ 2
_,_ =4+

77" R dx 2 %'7 R

U X • (3.4g)

with

2

do

M7 R

o

do = K

o 2 4

(3.50)
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In the case of highly conducting plasma medium, then we can apply _R >>

1 and s >> i; in addition if the characteristic scale length "x" is much

smaller inside the current sheet in comparison with any other

characteristic length, then we may apply the theory of resistive ordering

suggested by Dobrott et. al., (1977), thus;

./7R _-I --~ , x ~ _, 4 - I; (3.51a)

From the RHS of Eq. (3.48), we note,

4 ~ 32 U,

which leads to

u ~ _-2 . (3.51b)

From Eq. (3.49), we find

i d2u

(_T R) --- _4(_T R) x
_2s2 d_ 2

yielding

s 2 ~ _-5 . (3.51C)

From these relationships, we observed that both functions of 4 and u are

proportional to _; thus we may expand these two functions as a series of

functions respectively,

4 = 4o + 4z + 42 + --. 1

JU = U o + U 1 + U 2 + ...

(3.52)

In Eq. (3.48),

1

"Y7 R
..... ) I, 1- 0-2 41 .. o 14o + _i 4- _2 + • = + 4 + ...

i I 1+ -- x u o + u% + ...

7T o

where superscript primes represent derivatives with respect to x.

Using the order of approximation, we note that
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_ _ , _ ~ _ , _-2 -z
o 1

Uo _-2 _~ t Ul

which leads to

tl

= 0
0

This condition gives constant -_ approximation,

(3.53)

_0 = constant (3.54)

Based on the expansion given in Eq. (3.52), we obtained the following

successive order of approxmation governing equations: the first order

equation for _ is,

1 1
I! m

= @o + --uox
I

"YTR "YTR

(3.55)

Similarly, we obtained as the first order equation for u from

(3.48)

"YTR

_2S2
u =- _ *0 (_TR) X + (i + _) X * .

0 1
(3.56)

Combining Eqs. (3.55) and (3.56), we have

"YT R

_2S2
u" - (l + _) x z u 0 = (_T_) x, 0 ,

0
(3.57)

From Eq. (3.55), the jump condition within the current sheet can

be computed as,

It° II m

=- " dx =- (qfTR _o + X Uo) dx •
A' _Z '_o ( -co

(3.58)

Assume that

U o (X) = _h(x) : X = ZX (3.59)

where
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"yTR
_4 = and _ = _TR/_. (3.60)

_2S2

using Eqs.(3.58) - (3.60), Eq. (3.57) becomes

h"(x) - (1 + _) x2h(x) = 40 x ;
(3.61)

Correspondingly, Eq. (3.58) becomes

, i [°_j ----_ ('YTR) 5/4 (_S) -I/2

40 ! -o0

(40 + xh(x)) dx ,

Introducing the Fourier transformation,

(3.62)

O0

h = e-iZx h (z) dz.

t
-00

and its inverse transformation,

(3.63a)

iIoh(z) = m e

2_ __

izx
h (x) dx. (3.63b)

Then Eq. (3.61) becomes,

, 1

h" (z) - (i + _) h(z) z 2 = - 40 _' (z) ,
i

(3.64)

where _(z) is the Dirac Delta function; hence Eq. (3.64) reduces

to

A ^

h"(z) - (I + _) h(z)z 2 = 0, for z # 0. (3.65)

The solution of the above equation could be represented by the MacDonald

function (Krall and Trielpiece, 1973).

h (z) = A_ KI/4 (1 + _)i/2 z2/2 , z > 0.
(3.66a)

h-(z) = -iA_ KI/4 (i + _)i/2 z2/2 , z < 0. (3.66b)

The appearance of the solution (Eq. (3.66b)) is due to the con-

sideration of the property of an odd symmetry for the RHS of Eq.
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(3.64) .

For the region z = 0, Eq. (3.64) becomes

^ . 4 0

h : -- 8' (Z)
i

By integration of both sides, we have

2A =

H + (z) Iz_o ÷

with

H÷(z) = _ KI/4 I(l + _)i/' z/----1 .

Since

_;o dx = _&o 5(z)dz dxe -izx = 2_ o _(z)

-CO -CO _" -CO Z = 0

oxh (x) dx = (z)dz ie -izx

--CO L __ --CO

1 r°"dx = 2zi h(z)
t

-CO

= - 2_ o_(z) Iz=0
eo ^

- 2_i h(z) _ (z)dz,

÷CO

I Ih' (Z) 6(z)dz = 2 h' (z) 6(z)dz.

t _,_ 0 +

We finally derived

d

H ÷ (z)

(_Te)s/4 dz

' = - 2_ Iai (ms) 112 H +(z) Z=0 +

using the characteristics of the MacDonald function,

ZI14 KII 4
dz

(Z) 1 =- Z314 K314(Z )

and the asymptotic value for Izl << i,

(3.67a)

(3.67b)

' (z) dz

(3.68)
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2 v 1

ZVKv(Z) - , (3.69)

2 sin v_ r(1-v)

with F being the gama function, Eq. (3.68) becomes

(_TR) 514 ['(3/4)
A' = 4= (1 + _)_/4 (3.70)
i (=S)_/2 r(1/4)

By equating the jump conditions inside and outside the current sheet, we

find the growth rate dispersion relation from Eqs. (3.43) and (3.70),

(TTR) 514 F(3/4) 1 I! 1
4_ (i + _)I14 =- - _ • (3.71)

(=s)I/2 P(1/4) 2

This is the key equation for determining the resistive instablility.

For the illustration, we take a coronal structure of current sheet,

the typical plasma and field parameters are:

L s = i0 km, B = i00 Gauss,

Jn e = 109/cm 3, T e = 106 °K.

(3.72)

Based on these fundamental values, we obtained Alfven speed (vA)

to be 8.4 x 107 cm/s and the sound speed (cs) to be 2.3

x 107 cm/s. If we take v ° ~ 3.107 cm/s,
0

from Eq. (3.50b), we

find that,

d 2 = 2.2 x l04. (3.73)
0

Correspondingly, the resistive parameters are; T R ~ 1.3 x 106 s,

T H = Ls/v A - 1.2 x 10 -2 s, s = TR/7 H = 108 . Therefore, Eq.

(3.71) gives

7 ~ n I12 (3.74)
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which says that the growth rate is proportional to the square root of

resistivity, such as

1 _112 SI12 P (i/4) 1

= -- - 3 . 10 -3 (S-l). (3.75)

d1120 2_(!I F(3/4)TR-=

This result is based on constant -4 solution (i.e. regular homogeneous

field configuration). When the reconnection process begins, the constant

-4 approximation no longer becomes valid; thus, the other kind of

instability may appear. We shall examine this situation in the next

section.

2.4 Eruptive Local Instability

When the constant -4 approximation becomes involved, we should re-

examine the set of coupling equations (i.e. Eqs. (3.48) and (3.49)). By

introducing the Fourier transformation as suggested by FKR, such as,

= _(e)e -iex de

!
--(D

U - u(e)e -iex de

!

into Eqs. (3.48) and (3.49), we find that

A

7T R A d2u(e)

(02 + =2) u(0) = (i + _)
_2s2 de 2

+ i77 R

d_(e)

do

(4.1)

(4.2)

(4.3)

A A

__ (e2 + _2) _(e) = -_(e) + i

77 R

Using Eq.

A

1 du(O)

7T R de

A

d_
(4.4) to eliminate -- in Eq. (4.3), we obtain

dO

(4.4)
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s2[
P

d2u(e) d

+ --

d02 de

A

- u(o) + 1 =
e2 + _2 + p de

(4.5)
with

P = 7/" R (4.6)

It is worth noting that the Eq. (4.5) is identical to the Eq. (5) of FKR by

setting _ = 0, which implies that 77 R e _ or d o _ 0. Physically, this

corresponds to a very thin current sheet and a high resistive region.

Under the present case, we have

_2

-- = _ << i;

P

(4.v)

hence Eq.(4.5) can be written as

A

d2u(o2)

de 2
1

2

d [01 + _ du(el)
+ --

de I 0 2 + 1 dO 1
1

A

= A(O 2 + _)u(e I) . (4.8)
1

with

Eq.

0, = p-i/2 0 and A = P3/_2s2 (4.9)

A

(4.8) is the equation to be used to determine the solution u(0) and

subsequently W will also be determined by Eq. (4.4). Finally, the growth

rate for the non-constant-W-solution could be found.

In order to seek the solution for Eq. (4.8), we introduce the following

parameters:

^ 0 1 0
e = = - . (4.10)

L$

Since _ = -- << i, thus,

Ly
(14.8) becomes x _ ± _,

a

I01>> i. In this limiting case, Eq.
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^

d2u d [

--A- + -_- [ (i¢ d@ 2 de

A

1
de

,. *L

- A_(e 2 + i) u = 0 (4.11)

For _ > i, we have

I

e2
-- >> -- : 0 2

G

Eq. (4.11) gives

M ^

d2u . du * A
-- --.-- + 2@ --.-- - A_(e 2 + i) u = 0

de 2 de

The above differential equation can be

(4.12)

simplified by the following

transformation

u(e) = exp - 2 w(e) ,

so that, Eq. (4.12) reduces to

d2w

A 0 --^-- - (B 0 + 0 2 )
d0 2

w= 0

where

_2

A o = -- (_A + i) -z
_2

S 0 --

_(I + A_)

_(_A + I)

Eq. (4.14) can be simplified further by introducing

A

y= 0,
A*/2

0

so that the final form of Eq. (4.14) is

(4.13)

(4.14)

(4.15)

(4.16)
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d2w

+ (g + 1/2 - 1/4 y2)w = 0

dy 2

(4.17)

where,

1 B 0

g + - = - .__
2 2A I/2

(4.1s)

It is well known that Eq. (4.17) has the solution of a parabolic cylindrical

function thus,

w = og(y) (4.19)

when g = -i, Dg(y) satisfies the following boundary condition;

Dg(y) _ 0, as IYl >> I. (4.20)

Thus,

Where 0(y) is the probability integral, its asympotic value becomes

1 2 n- i (-i) mF (re+i/2)

1 - #(yl_) = -- e -Y z ? IYl
m=0 m+112

>> 1 , (4.22)

Returning to Eq. (4.12) for g = -I implies

S o
= 1 . (4.23)

or (I + A_)2 = (i + _A)

Using Eq. (4.24) together with Eqs.

(4.24)

(4.7), (4.9) and (3.50), we

we found the growth rate for non-constant -4 to be

2

1 d o 1
T H

(4.25)
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2.5 Numerical Results

In order to illustrate our theoretical results, we have chosen a

coronal structure of a current sheet plasma for testing. The typical

physical parameters for this kind of plasma and field are given in Eqs.

(3.72) and (3.74), which leads to 7 = 3 X 10 -3 s -I for the constant -4 case.

As a result we use the very same values forEq. (4.25), yielding 7 : 1.2 X105

s -1 for the non-constant -4 case. It is immediately reconized that the

growth rate between these two kinds of instability has a 107 order of

magnitude. Thus we can conclude that the constant -_ case leads to a

resistive instability of slow time-scale phenomena and the non-constant -4

case leads to a much faster time-scale phenomena called "eruptive

instability". Physically, we may claim that when a magnetized plasma

begins its dissipation in an orderly fashion through resistive

instability, the inbedded field is rather uniform. As soon as the field

configuration is distorted, the energy release can be more violent because

of eruptive instability.

2.6 Concluding Remarks

In this paper we have presented a theoretical result concerning the

transition of resistive instability to eruptive instability with

pondermotive force with high-frequency plasma ossicillations. It shows

that the constant-4A (i.e. uniform fieldconfiguration) leads to resistive

instability and that the non-constant -4 case leads to eruptive

instability. The close form solutions based on plasma and field

parameters are given for these two cases.

A numerical example is also given showing that the growth rate for

these two cases can be different in 107 orders of magnitude for the solar

corona structure of the current sheet.
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3 ANALYSIS OF INSTRUMENTAL POLARIZATION OF IMAGING OPTICS

3.1 Introduction

The objective of the SAMEX magnetograph's optical

system is to accurately measure the polarization state of

sunlight in a narrow spectral bandwidth over the field of view of

an active region to make an accurate determination of the

magnetic fields in that region. Our design goal is to measure
I

magnetic fields to an accuracy of one part in 10 4 . To achieve

this accuracy requires a polarimetric accuracy of 10 -4 in

determining the polarization components of the light as a

fraction of the total intensity. This requirement means that the

instrumental polarization of the optics must be reduced to levels

below 10 -5 .

All optical elements introduce some polarization

change, especially when used off axis. Combinations of mirrors

and antlreflection-coated lenses can display a full range of

polarization behavior: linear and circular polarization and

linear and circular retardance. Of particular concern in the

development of highly accurate polarimeters is polarization

rotation which causes linearly polarized light to leak through

subsequent of crossed polarizers.

Because of this instrumental polarization, the SAMEX

foreoptics (the optical elements in front of the polarizer - the

Cassegrain telescope and the relay lenses) must be considered as

a weak polarizer in front of the polarimeter section. This

instrumental polarization in the foreoptics changes the

polarization state of the sunlight incident on the polarimeter
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and thus introduces errors in the measurement ofthesolar

magnetic field.

I_ possible, it would be preferable to place the

polarimeter before the imaging optics, to locate polarizers and

retarders in front of the Casseqrain telescope. Then the

determination of the polarization state of light would be

unaffected by the instrumental polarization of the foreoDtics.
i

This design would have the additional advantage of allowing the

light to Pass through the Polarimeter over a smaller range of

angles of incidence. However, such a design is impractical for a

system with a 30 cm aperture - high Guality polarizers and

retarders have much smaller apertures, on the order of a few

centimeters. Thus, it is necessarv to use collecting optics to

collect the 30 cm aperture of light and focus it through small

polarizing elements in the polarimeter section. As the collected

light is passed through smaller apertures, the angular spectrum

of the liqht increases in a relationship Governed by the Lagrange

invariant. By reducing the beam from 30 cm to 2 cm through the

tunable filter and polarimeter, the range of anqles_0f incidence

is increased by a factor of 15, from 5 min of arc to 75 min of

arc, therebM increasing the angle of incidence effects in the

lenses just in front of the polarimeter and in the polarimeter

itself. Consecuently we anticipate there will be some

instrumental polarization due to the foreoptics in the light

entering the polarimeter.

The Goal of the analyses outlined in this section is to

precisely characterize the extent of this instrumental
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Dolarizatlon, and to design the optics and coatinas in unison to

minimize th_s spurious polarization introduced bV the

foreoDtics. We will show calculations of the instrumental

polarization of ordinary foreoptics compared with the

polarization performance of special ultra-low polarization

optical coatinas desianed for this application.

The instrumental polarization analysis uses a proaram
i

tha incorporates the theory of polarization into the standard

Geometrical optics and lens design codes (ChiDman, 1987). By

including the polarization of the optical elements in the _irst-

and third-order design process, the effects of coatings on curved

substrates can be treated. For each ray, a polarization matrix

(in the Jones matrix formulation) is calculated for the ray at

each optical interface. These matrices are multiplied toqether

to calculate the polarization matrix for that ray from object

space to imaae space. An analytic function for the rays provides

the polarization behavior as a function of the exit pupil, object

height, and wavelength. This technique represents a quantum jump

improvement in the practical design of foreoptics in front of a

polarimeter and will enable the degree of residual instrumental

polarization to be reduced to < 10 -5 in the SAMEX maqnetoaraph

system.

3.2 Instrumental Polarization of Standard Cassegrain Telescopes

To establish the need for a detailed polarization

analysis, we estimate the polarization effects associated with a

Cassearain telescope with aluminum thin film coatinas. The
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electric vector of light incident on a surface of the Cassegrain

can be decomposed into two parts, the components of the vector

vibrating parallel (p) and perpendicular (s) to the plane of

incidence. These components have different reflections as a

function of the angles of incidence. Figure 23.a shows the

reflectance for s and p polarized light from an aluminum thin

film coating with complex index of refraction n = 0.7 - 7.0 _.

Figure 23.b shows the phase change on reflection for the s and p

components• The difference in s and p reflectance causes a weak

linear polarization aligned perpendicular to the plane of

incidence to be associated with reflection from all metallic

interfaces. Moreover, the differences in phase change cause a

weak linear retardance to be associated with reflection from

mirrors.

The percent reflections from the aluminum surface for

the surface parallel (s) and surface perpendicular (p) rays are

approximately given by

R s = 0 94 + 0.02i 2

and

Rp = 0.94 - 0.02i 2

where the reflectance rate of change per unit angle of incidence

squared (i 2) is approximated from Figure 23.a. Therefore, the

induced linear polarization is estimated to be
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Figure 23. Linear polarization and retardance effects for a

Cassegrain telescope. The percent reflectance (a) and phase

change (b) on reflection from an aluminum thin-film coating is

shown for both the s and p components of the incident light wave.

The wavelength of the light is 5250 A and the complex refractive

index of the aluminum coating is n = 0.7- 7.0 T. The

differences in the s and p reflectance cause linear polarization

aligned with the incident plane. The differences in the s and p

phase cause a linear retardance. The differences are small for

:ismall angles of incidence, but they ace.not negligible for the

"I.>SAMEX magnetograph design.
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Rs - Rp
Lp = " 0.02i 2.

+Rs

At the edge of the primary mirror of aperture D and focal length

fl, a ray is reflected through a total angle of tan(D/fl) ~ D/fl

= i/f, where f is the f-ratio. Then for a Cassegrain telescope

the maximum angle of incidence im is given approximately by one

i

half the reciprocal of the f-ratio. For an f-ratio of 5, the

angle of incidence is ira=i/10. Hence the induced linear

polarization is on the order of _ = 2 x 10 -4. For a linearly

polarized ray this represents a rotation.of its plane of
o.

polarization over a segment of the mirror, and this rotation

introduces errors in the deduced polarization state. In Figure

24 the angle of incidence versus the pupil coordinate for an

'illustrative' Cassegrain telescope is shown for an on-axis and

off-axis ray. The point to note is that, for the off-axis ray,

the average angle of incidence is not zero, and hence there is a

net polarization effect associated with the off-axis rays.

Furthermore, even on-axis, we average over the square of the

incident angle which gives a net polarization contribution, as

shall be discussed below.

For an on-axis beam incident on either of the aluminum

coated Cassegrain telescope mirrors, the magnitude and

orientation of the linear polarization and linear retardance

associated with the mirrors have the forms shown in Figure 25.a

(polarization) and Figure 25.b (retardance) as a function of the

pupil coordinates. In Figure 25.a, the linear polarization is
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Figure 24. Illustrative example of angles of incidence at
CassegraiR mirrors. These curves show the variations o_ the angle

of incidence along the normalized pupil coordinate for on-axis

and off-axis rays incident on both the primary and secondary
2

; mirrors of a Cassegrain system. The off-axis rays have a non-

:zero average angle of incidence at both the primary and secondary

mirrors. This implies a net linear polarization associated with

the telescope for off-axis rays. The example shown here is for a

Cassegrain with a larger field of view than the one chosen in the

SAMEX design. It was chosen to provide a vlvid example of the
off-axis problem,. .: ..
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zero in the center of the mirror where the beam is at normal

incidence. The magnitude of the linear polarization

(polarizance) increases quadratically with distance from the

center of the mirror. The linear polarization is oriented

tangentially. This polarization pattern (polarization

aberration) is called linear polarization defocus (or quadpol).

Figures 26.a and 26.b show the effect of large amounts of linear

polarization defocus (about 40 times more than the conventional

Cassegrain) on beams of uniform left-circularly polarized light

(a) and uniform, vertical-linearly polarized light (b). The

linear polarization associated with the telescope mirrors changes

the polarization state of the light causing spatial variations of

intensity and polarization across the beam. If the polarization

state of th_ light is now measured with a polarimeter, a

polarization state different from that incident on the mirrors is

obtained. Despite the symmetry associated with the resulting

transmitted polarization patterns (such as in Figure 26), the

polarization variations do not cancel (due to averaging over the

incident angl# squared). This is best understood by considering

the transmitted light as being a superposition of two

polarization states: the incident state yields the correct

polarization measurement; the light in the orthogonal state

constitutes the error signal introduced by the instrumental

polarization.

For example, in the case of Figure 26.b, the light in

the orthogonal state (horizontal linear polarization) has the

form across the pupil shown in Figure 27. Although the phases of

this horizontal component are 180 ° out of phase in the four
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Figure 26. Linear polarization defocus effects for a Cassegrain

telescope. This figure illustrates linear polarization defocus
effects for a Cassegrain primary mirror for a beam of (a) unifor_

left circular polarization and of (b} uniform vertical linear

polarization. The ellipses and arrows at the top, bottom, l'eft,

and right of the diagram represent the same relative position of

the polarization ellipse of the reflected beam of a Cassegrain

mirror with an exceptionally large field of view (40X the normal

Cassegrain field). The location of the arrowheads represents the
. phase of the light where one cycle is a full wave. The defocus

•:,effect introduces the orthogonal state of polarization which

"represents an error signal introduced by the instrumental

polarization in the measurements made with the magnetograph.

/&

42



,. • :_

.P .•

4

L

4m"

• , O• "

Figure 2?. Polarization errors associated with a Cassegrain
telescope. This Eigure illustrates the orthogonal state of
.polarization introduced by the instrumental polarization of a
Cassegrain mirror for the "incident linear (vertical)polarization
of Figure 26 b. These horizontal components will pass through
the l_near polarizer_of a _gnetograph's _larimeter when it is

i in the horizontal position and thereby contribute to the error

" _signal of the magnetograph.
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quadrants (resembling astigmatism), all this light will pass

through a horizontal linear polarizer and contribute to the

polarization error signal. The phase differences do not cause

cancellation of the polarization aberration; instead they affect

the polarization'accuracy and change the structure of the

diffraction pattern (Kubota and Inoue, 1959).

For a metallic mirror, the effects of the linear

retardance are orders of magnitude larger than the effects of the

weak linear polarization. Figure 25.b shows the form of the

linear retardance associated with an on-axis beam incident at a

Cassegrain telescope mirror. The orientations of the lines

represent the orientation of the fast axis of the retardance.

The lengths of the lines signify the magnitude of linear

° ...

retardance, which increases quadratically with pupil

coordinate. This polarization aberration is called linear

retardance defocus or quadtard. Figures 28.a and 28.b show the

effect of quadtard on a uniform left-circularly poiarized beam

(a) and On a uniform, vertical-linearly polarized beam (b). The

dominant effect of the retardance is a coupling of linear into

circular polarized light and vice versa. These figures are for

retardances about 40 times greater than the retardance of a

conventional Cassegrain.

In general, a Cassegrain telescope displays both these

polarization aberrations simultaneously, linear polarization

defocus and linear retardance defocus, with the retardance being

the larger term. This polarization aberration induces

polarization coupling which reduces the accuracy of subsequent

polarimetric measurements. The polarization coupling for a
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SAMEX-type Cassegrain design but with standard aluminum coatings

is 3 x 10-3 , almost two orders of magnitude greater than the

radiometric accuracy of the optics. Similar amounts of

polarization accuracy would be associated with relay optics

utilizing standard antireflection coatings.

3.3 The SAMEXDesign

It is clear from the discussion of the previous section

that standard optical designs will not suffice for the S;_MEX

foreoptics because they produce unacceptable levels of

instrumental polarization. The design of the SAMEX foreoptics

resulted from the development of a new method for the analysis of

instrumental polarization based on the theory of "polarization

aberrations." This theory allows the description of the

variations of amplitude, phase, and @olarization of an optical

wavefront across the exit pupil of an optical system. Because

the theory naturally incorporates the polarization properties of

the thin film coatings on the individual surfaces of the optical

system, this method integrates the coating design with the lens

design. In ordinary optical design work, these two phases of the

design are normally decoupled and pursued separately.

This unified optical and coating design was performed

for the SAMEX foreoptics to insure that the SA/IEX magnetograph

will accurately measure the polarization state of incident

sunlight. To improve the SAMEX polarization accuracy over

standard designs, various telescope and lens coatings were

investigated. Most standard reflection-enhancing coatings for

telescope mirrors were found to be substantially worse than the
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Figure 28. Linear retardance effects associated with a

Cassegrain telescope. The large effect of linear retardance from

a Casse_rain mirror is shown for (a) a beam of uniform left

circular polarization and for (b) a beam of uniform linear

(vertical) polarization. The dominant effect of linear

retardaace is a coupling of linear polarization into circular and
vice versa.
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bare aluminum. Two coatings were designed which had

significantly improved polarization performance for a

telescope. These coatings are described in the section on

coatings (section 3.6). Figure 29 shows the linear polarization

(a) and linear retardance (b) associated with a Cassegrain

telescope when these coatings are utilized and when ordinary

aluminum coatings are used, as a function of the height of the

ray entering the telescope, from top to bottom. The amount of

polarization or retardance for the three coating choices is

plotted along the y-axis for (i) two aluminum coated mirrors, (2)

two Q201 coated mirrors, and (3) one Q201 coated mirror and one

eight-layer enhanced-reflection coating. The third design (3)

balances polarization and retardance effects of opposite signs

between the two mirrors to achieve a polarization performance

superior to either mirror separately.

Similar design strategies have been used with the relay

lenses to achieve significant improvements over conventional

coatings and to 6alance the remaining polarization effects. As a

result, the overall polarization performance for the foreoptics

has been improved by a factor of ten thousand relative to

conventional designs. Thus the actual attainment of the

polarimetric sensitivity determined by the SAHEX requirements

will presumably be limited only by whatever scattering effects

are present, and not by the instrumental polarization of the

optics.

The method used to achieve this dramatic result -

polarization aberration theory - is outlined briefly in sections
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curve), and (3) one 0201 and one aluminum (solid curve). The
0201 interference coating is a 201 coating of bi-layers with high
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3.4 and 3.5 and expanded upon in Appendix C. A full development

of the method is given in Chipman (1987). The basic results from

the method are the second-order polarization aberration

coefficients which provide a quantitative measure of the

polarization accuracy of any optical system. Specifically, these

coefficients determine the parameter _p, the polarization

accuracy, defined as the maximum fraction of light which can be

coupled into an orthogonal polarization state. It is given in

terms of the second order polarization aberration coefficients

P(I,0,2,2), P(l,l,l,l), and P(I,2,0,0):

ap _ P(I,2,0,O) 2 ÷ ½ p(l,l,l,1)2÷ pcl,0, ,2 2

For the SAMEX magnetograph foreoptics and coating design given

herein, the value of

ap < 1.4 x 10 -7

was obtained. For standard coatings of aluminum, the

polarization accuracy is

P

= 2.7 x 10 -3

for a Cassegrain telescope alone (no relay lenses). (The second

order aberration coefficients used in these calculations are

given in Table 19.) This result for ap means we have achieved

our design goal: the polarization state of the light from the
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Sun can be determined without introducing polarizing effects from
L •

optical elements in the system. _ have been able to effectively

eliminate the problem of induced instrumental polarization in the

SAMEX foreoptics.

3.4 Polarization Aberration Theory

The SAMEX foreoptics are intended to transmit all

polarization states equally. But all optical interfaces display

some polarization when used at non-normal incidence. Thus

polarization is present in all systems at some level. If the

system is intended to be nonpolarizing, the instrumental

polarization is often termed "residual polarization" to signify

its generally undesirable character. Residual polarization might

be compared to wavefront aberration because both interfere with

the measurement of optical fields and reduce the image forming

potential of the optical system.

The principal cause of instrumental polarization in the

optical systems of present solar magnetographs is the

polarlzatlon due to non-normal incidence at the optical

interface_ and coatings. Since each ray takes a different path

through the system with its own angles of incidence and planes of

incidence, each ray in general experiences a different change in

its state of polarization. This residual polarization varies

with wavelength, object coordinates and pupil coordinates.

"Polarization aberrations" will be defined as variations of the

amplitude, phase and polarization of an optical wavefront across
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the exit pupil of an optical system and the dependence of these

variations on wavelength and object coordinate. The polarization

aberrations are extensions of the wavefront aberrations and

encompass both amplitude and polarization variations, thus

providing a more complete characterization of the electromagnetic

fields transmitted by an optical system.

Vacuum-deposited thin fil_s are used on most optical

surfaces to control the amount of transmission and reflection.

These thin films are usually less than the wavelength of light in

thickness. Being so very thin, the effect of the films on ray

paths are accurately modeled by treating the films as having

parallel surfaces which contour the substrates on which they are

deposited. Due to the closely spaced parallel surfaces, thin

films have negligible influence on the ray paths through the

system and are generally ignored when simulating a system by ray

tracing. These coatings principally affect the amplitude and

polarization of the ray and have much less effect on the optical

path difference. This division, with the optical surfaces

governing the ray paths and the thin film coatings governing the

amplitude and transmission, allows the optical system design

problem to neatly decouple into two separate problems, lens

design and coating design. The wavefront performance and image

quality of the system is calculated by a lens designer using a

ray tracing optical design program. The amplitude and

polarization calculations at individual surfaces are performed

using a thin film design program.
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This decoupling of optical design and coating design has

usually worked well. The coatings designed to optimize the

transmittance or reflectance at an interface have usually reduced

the amplitude and polarization variations and thus reduced the

polarization aberrations at the interface as well. For example,

a quarter-wave magnesium fluoride antireflection coating on glass

typically reduces reflection losses.at the design wavelength by a

factor of four, and reduces the instrumental polarization by a

comparable factor. This fortuitous circumstance has allowed lens

and coating design to remain relatively uncoupled. Thus

instrumental polarization was usually ignored as a higher order

effect. But it is not sufficient to design thin film coatings_in

isolation from the lens design for the SAMEX magnetograph - the

demands on amplitude and polarization performance are too great.

For the designs of the SAMEX system special methods

have been developed to calculate the instrumental polarization of

the SAMEX foreoptics. These methods are described in detail in

Appendix C. Calculating the instrumental polarization requires

performing thin film calculations during the ray tracing

process. This idea is not new, but its implementation is complex

enough to have delayed this obvious integration of these two

branches of optical design until specifications required it.

In this new methodology, a Jones polarization matrix is

calculated for arbitrary optical paths through the optical system

and includes the effects of all the specified optical coatings on

the curved optical interfaces. The specific technique used for

this calculation is the method of "polarization aberrations."
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This is a method analogous to the aberrations of geometrical

optics (spherical aberration, coma, astigmatism, etc.) except

that it encompasses the polarization effects of coatings as well

as the wavefront aberrations.

The analysis of the SAMEX optics proceeds in several

stages and is summarized in Table 16. First, the optical system

is designed using the CODE V optica_ design program to optimize

the optical design for a spatial resolution with a minimum

aperture. During this phase the angles of incidence are kept as

small as possible to reduce polarization effects from coatings.

Second, special thin-film, reflection-enhancing coatings are

designed for the telescope mirrors and special antireflection--

coatings are designed for the lenses because conventional coating

designs show significant polarization and retardance

contributions near normal incidence. These coatings are special

designs which reduce the polarization effects at small angles of

incidence over the wavelength band of the magnetograph. Next, a

Taylor series is calculated to represent the coating

performance. Finally, the effect of these coatings in the

magnetograph optical design is calculated using the polarization

aberration method; this last step produces the parameter ap, the

polarization accuracy.

53



Table 16. Steps in Instrumental Polarization _ Simulation

i. Design optical system using CODE V.

2. Design low polarization, high reflectivity telescope coatings.

3. Design low polarization, antireflective lens coatings.

4. Determine Taylor series representation of coating

performance.

5. Calculate polarization aberration.coefficients of optical

system.

6. Calculate &p.

7. Iterate 2, 3, 4, 55 6 until satisfactory performance is

achieved (&p < I0 ).

In the following section, the method for deriving the

polarization aberration coefficients and the polarization

accuracy Ap is outlined in more detail.

3.5 Polarization Aberration Coefficients and Polarization

Accuracy

The polarization states of the electromagnetic field

are described by the complex two-component Jones vector, _. The

polarization states and hence the Jones vector are transformed

when a ray passes through an optical interface which is described

by the Jones matrix transformation JJ. For the SAMEX foreoptics

we have homogeneous, weakly polarizing optical elements (by

design) for which the transmission coefficients perpendicular,

ts, and parallel, tp, are given in terms of a Taylor series

expansion of the angles of the chief and marginal rays, ic and

54



im, respectively. Each individual optical ray path for the

rotationally symmetric system can be defined in terms of the

object height, H, and the pupil coordinants, 0 and _ as defined

in Figure 30. The cascade effect of an optical train is given by

the product of the individual Jones transformation matrices for

each element interface. Then the overall polarization of the

foreoptics is described by the complex Jones transformation

matrix which is expanded in terms of the ray coordinates

(p, _, and H) and the basis matrix set _(k):

3

JJ = E Z _ Z P(k,u,v,w) H u v w0 cos
k=0 u v w

(_) _(k)

where P(k,u,v,w) are the expansion coefficients. The 2 by 2 --

matrices, a(k), which define the k th polarization state, are-the

identity matrix and the Pauli spin matrices. This expansion is

in the same f0rm as the standard wavefront aberration expansion._

These polarization expansion coefficients for an expansion to

second order (specified by s = 2) in the angles of incidence are

a function of the total optical transmission, _, the normalized

secondard order basis set coe_ficlents, d(k,s,q), for each

individual optical element, q, and the angle of incidence of the

chief and marginal rays. Hence these coefficients are dependent

on the characteristics of the optical coatings and the ray

tracing results. These SAMEX specifications are given in Table

19a-c.

The polarization aberration expansion for the radially

symmetric system of interfaces with isotropic coatings and
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Figure 30. Paraxial coordinate system. The paraxial system is a
normalized right-handed coordinate system. The z axis is the

optical axis of a rotationally symmetric optical system; light

initially travels in the direction of increasing z. Rays through
an optical system are characterized by ray coordinates at the

object and entrance pupil. H is the normalized object

coordinate, _ is the normalized pupil radius, and _ is the polar

angle in the pupil measured counterclockwise from the y axis;

The normalized Cartesian coordinates in the pupil are x and y.

The chieE and marginal rays are also shown.

•:k:"
..... ...'°

°.-

° .... "! '..: .

56



nonpolarizing transparent media is given to second order in the

angles of incidence by the polarization aberration expansion

JJ(H,_,$) = T[a 0 + p(l,2,0,0)H2al +

P(l,l,l,l)H_(elCOS $ - _2sin$) +

P(l,0,2,2)e2(_icos2 $ - _2sin2$)].

The amplitude aijkl of the polarization aberration coefficient

P(i,j,k,l) describes the magnitude of the polarization aberration

effects while the phase _ijkl of the coefficient describes the

magnitude of the retardances. Then, given a specific incident

polarization state, the polarization state of the exit beam can

be calculated from this matrix. Therefore the amount of

polarization in the orthogonal state can be determined. This

orthogonal polarization in the exit beam then determines the

accuracy Ap of the polarization measurement.

As an example of the coupling of the optics to an

orthogonal state of polarization, i.e., polarization crosstalk,

consider the following example. The on-axis linear polarization

and linear retardance of the SAMEX foroptics, i.e., the term

linear defocus, is described by the fourth term in the

polarization aberration expansion JJ. The instrumental

polarization function Jd(H,D,%) for linear defocus is then

JJd(H,p,$) = T[o 0 + P(I,0,2,2)_

= _[_0 + (a1022 + _

2(alCOS2 # - _2sin2_)]

2

1022 p (el cOs2_ - e2sin2$)],
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where T is the a_plitude of transmittance of the system down the

optical axis. The transmittance (T) describes the polarizatfon

independent reflection and absorption losses associated with the

ray down the optical axis. 9(1,0,2,2) describes the linear

polarization (ai022) and linear retardance (_i022) associated

with the marginal ray.

At any given point in the pupil, the eigenenpolarizations

are linearly polarized light, oriented radially, 3 r, and
i

tangentially 3 t. This concept is important to the definition of

polarization accuracy which is to be defined. We shall now

calculate for circular and linear incident polarize light to

illustrate of the effect of crosstalk.

Maximum coupling occurs when the incident light is

circularly polarized, since circularly polarized light can ilways

be decomposed into equal components of 3 r and 3 t everywhere in

the pupil. The coupling is zero in the center of the pupil

(where the polarization and retardance vanish) and increases to a

maximum coupling at D = 1 of

Ic,max(H 1 _) ip(1 0,2,2)12 2, , = , = ai022

at the edge of the pupil. The net fraction of incident

circularly polarized light coupled into the orthogonal circularly

i 1
polarized state, c' is given by the integral over the pupil,

2_ i

i1 =__1 f d_ f od_l_2p(1,O,2,2)l 2,
c _ 0 0

IP(I,0,2,2)I 2

•
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If we have a Stokes vector of +V then the amount of polarization

in the orthogonal state -V can be calculated. If -V is the

maximum amount of crosstalk, we identify this as the polarization

accuracy.

For incident linearly or elliptically polarized light, the

fraction of coupled intensity is less because the light is not

composed of equal fractions of eigenstates. T_e coupling is

minimum for incident linearly polarized light, which will be in

one of the eigenpolarizations along one axis in the pupil and in

the orthogonal eigenpolarization along the orthogonal axis. Here

the fraction of coupled energy will be calculated assuming ank

incident polarization state of horizontal linearly polarized

light H for calculational simplicity; the same fraction is

coupled for any linearly polarized incident state. The

orthogonal state of vertical linearly polarized light is

designated as V. The polarization state transmitted by an

optical system described by linear polarization defocus for H is

_(H,m,_) = z[H + P(l,0,2,2)m2(H cos 2% - V sin 2¢)].

The fraction of incident H light coupled into V light is equal to

2,, 1

_.! f d, f
c _ 0 0

2_ 1

=! f d, f
Tr 0 0

pdpl P(1,0,2,2) p2 sin 2¢ [ 2
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2_ 15IPcl,0, ,2)tf sin22 d f
" 0 0

IP(I,0,2,2)I 2
6

Therefore, we defined the polarization accuracy, ap, as the

maximum fraction of light which can be coupled into orthogonal

q

polarization states. The incident polarized state is given by

the Jones vector, _. This vector is rotated by the optical

system and the rotation is given by the Jones matrix, JJ. The

amount of polarization along the orthogonal state of

polarization, _', of the incident polarization state is given by

the projection of JJ(J) into _'. i.e.

JJ(_) ._'.

The maximum projection is used in defining the polarization

1 > ic2 ' and only Icl isaccuracy. In the above example Ic

retained for the linear defocus term, P(I,0,2,2).

This value is given by the square of the second order Jones

matrix and is given in terms of the polarization aberration

coefficients. Then the polarization accuracy is given in terms

of the second order polarization abberation coefficients

P(I,0,2,2), P(I,I,I,I), and P(I,2,0,0):
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or

_p <_IP(1,2,o,o)l 2 ÷%

where the integrations have been carried out for the squared

terms and estimated for the crossed terms as being less than or

equal to the direct product terms. For the SAMEX magnetograph

design, the value for the polarization accuracy,

< 1.4 x i0 -7
P

is obtained for specially selected optical coatings. These

second order aberration coefficients are given in Table 19. The--

second order coefficients are sufficient since the next order

that contributes is the fourth order and their polarization

2

effects would be on the_Qrder of (_p) • In the following section

we discuss the process used to design these special optical

coatings.
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Table 19-a. Table of Total Second Order Polarization

Aberration Coefficients for the

SAMEX Magnetograph Given the Individual

Surface Components of Table 19-b

Vector Quadratic Piston:

= _ d(l,2,q) ic2(q)P(I,2,0,0) q

= -7.72xi0 -5 - _ 1.50x10 -4 radians 2

Vector Tilt:
I

P(l,l,l,l) = 2 d(l,2,q) ic(q) im(q)q

= -1.42xi0 -5 - y 2.70xi0 -5 radians 2

Vector Defocus:

= _ d(l,2,q) im2(q)P(I,0,2,2) q

= -l.91x10 -5 + 7 1.80x10 -4 radians 2
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Table 19-b. Surface by Surface Polarization Aberration Contributions
Given Surfaces as Defined in Table 19-c

Vector Quadratiq Piston Tilt Vector

d(l,2i ic=(q) 2 d(l,2) ic(q)im(q)
z Re Im Re Im Re

Vector De_ocu

1 8.3e-10 8.4e-7 -3.9e-8 -3.9e-5 1.8e-6 1.8e-3

2 -i •le-8 -i. 3e-6 3.9e-7 4.6e-5 -I. 4e-5 -i. 7e-3

3 -4.7e-7 -i. le-6 4.4e-7 5.8e-7 -i. 3e-7 -3.0e-7

4 I. le-5 -2.6e-5 -3. le-6 ,-7.5e-6 -9. le-7 -2.2e-6

5 -4.9e-6 -I. 2e-5 3.6e-7 8.5e-7 -2.6e-8 -6. le-8

6 -1.3e-6 0 -2.3e-6 0 -3.8e-7 0

7 -5. le-6 -i. 2e-5 -I. 4e-6 -3.4e-6 -4. le-7 -9.8e-7

8 -2.8e-5 -6.6e-5 -2.3e-6 -5.5e-6 -i. 9e-7 -4.6e-7

9 -1.3e-5 -3. le-5 -1.5e-6 -3.6e-6 -1.7e-7 -4.2e-7

10 -I. le-8 l.le-6 5. le-8 -4.9e-6 -2.3e-7 -2.2e-5

ii -5.7e-7 0 I. 2e-6 0 -2.7e-6 0

12 -i. le-6 -2.7e-6 _ I. 3e-6 3. le-6 -i. 5e-6 -3.6e-6

Note: The surface numbers S(i) are related to the surface numbers

q by S(i) = q + 2, i.e. q=l is the primary mirror and the-
prefilter is not considered. The notation 8.3e-i0 means 8.3xi0 -I0
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Table 19-c. The Surface Definitions for the Polarization Aberration

Coefficient Calculations

Surface Optical

q Coating

Paraxial A_le Second Order** Magnitude of

ic(q) im(q) Polarization 2nd Order
Re Im Polarization

1 refl201

2 layers8onAl
3 vi0c5256

4

5

6 kf9fk5

7 v10c5256

8

9
10 vi0c525

Ii kf9fk5

12 vc10c5256

0.00134 -0.06250 2.82e-7" 2.84e-4 2.8e-4

0.00236 -0.08519 -1.20e-6 -1.39e-4 1.4e-4

0.03862 -0.02031 -1.90e-7 -4.53e-7 4.9e-7

0.18664 0.05388 , " " "

0.12576 -0.00908 " " "

-0.30317 -0.05091 -8.91e-8 0.0 8.9e-8

-0.12743 -0.03622 -1.90e-7 -4.53e-7 4.9e-7

-0.29808 -0.02495 " " "
-0.20326 -0.2363 " " "

-0.00703 0.03169 -1.38e-7 1.33e-5 1.3e-5

-0.06243 0.13588 -8.91e-8 0.0 8.9e-8

-0.5980 0.06974 -1.90e-7 -4.53e-7 4.9e-7

*(2.82e-7 = 2.8_xI0 -7)

**The rate of_linear polarization

squared (deg-2) for the specified

(Re) and r_tardance

optical coating.

(Ira)per angle of incidence
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3.6 Coating Designs

A design study was performed to find coatings especially

suitable for use in the SAMEX magnetograph. First, many

conventional coatings were examined and found to have

polarization and retardance groperties that make them

unacceptable for use in the SAMEX magnetograph. Alternative

coating designs were devised with improved polarization

performance and the best of these were specified for the

instrumental polarization simulation. Coatings were designed,

optimized and analyzed using two thin film coating programs: FTG

Software's Filmstar and Prof. A. Macleod's (University of

Arizona) FILMS. --

The requirements for the SAMEX magnetograph coatings a_e the

following:

_ 1) They must have extremely low polarization properties

near normal incidence so that they introduce a minimum of"

polarization or retardation into the optical system.

Specifically, the differences between the s and p amplitude

coefficients for reflection or transmission for less than i0"

angle of incidence should be 0.01% and the phase difference

should be less than 0.05".

2) The system's transmission must not be compromised by the

coatings: reflective coatings should reflect > 99.9% and

transmission coatings transmit > 99.7%.

3)

costly.

They must be manufacturable and not be excessively
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4) The amount of scattered light should be small.

5) They should have reasonable tolerances for fabrication.

Several common reflecting coatings for telescopes and

antireflecting coatings for lenses were analyzed and found to be

inadequate for the SAMEXmagnetograph. For example, telescopes

are frequently coated with bare aluminum coatings (AI) or

quarter-wave stacks on top of aluminum. These coatings have very

little linear polarizationnear normal incidence but substantial

amounts of linear retardance. The common antireflection coatings

for lenses (quarter-wave MgF 2 and broadband antireflective

coatings) have very little retardance near normal incidence but

substantial linear polarization.

Three coatings (see Table 20) have been selected from our

coating design study for inclusion in the SAMEX magnetograph

design. The polarization effect of these coatings has been used

in the instrumental polarization simulation. These coatings

demonstrate that coatings with the necessary low polarization

performance can be designed. The present coatings are somewhat

sensitive to fabrication errors and are very wavelength

sensitive. The designs would benefit from further work to

understand why they work, knowledge which should lead to fully

optimized designs with improved manufacturing tolerances.

Table 20 contains the description of the three coatings

specified. In addition, the optical system contains two cemented

interfaces, between kf9 glass and fk5 glass, specified kfgfkS.

The polarization of this interface, although negligible, Was

included in the instrumental polarization calculation.

• .-o_
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The coating Q201 is a 201-1ayer, quarter-wave enhanced

reflection coating specified for the primary mirror. The

philosophy behind this design is that the polarization effects

arise because of large refractive index differences between

layers. This coating uses two materials with a small index

difference, fused silica at n=1.45 and evaporated glass at

n=1.52. To achieve the desired reflection performance with

smaller index differences requires more layers, 201 in this

case. The materials chosen are both amorphous and thus quite

suitable for coatings with large numbers of layers, since they

don't display the microcrystalline growth patterns which lead to

the unacceptable scattering and inhomgeneity associated with

crystalline materials. Figure 31 shows performance curves for

Q201 both as a function of angle of incidence an_wavelength.

Figure 31.a-i shows the absolute phase change on reflection for

the s and p components. The quadratic portion of these curves is

the defocus introduced by the coating. The parameter of greatest

interest is the retardance, the difference between the s and p

phase changes; it is plotted separately in 31.a-2. This

retardance is below 0.i ° over the angles of incidence of

importance. Figure 31.a-3 shows the s and p intensity

reflectance as a function of angle of incidence. The difference

between the s and p reflectance is the linear polarization, here

less than 0.01%.

The coating specified for the secondary, LSonAl, is a more

conventional 8-1ayer, reflection-enhancing coating specially

optimized to complement the Q201 coating. This coating has the



opposite sign on both its linear polarization and retardance

relative to Q201. Thus the small residual polarizations of these

two coatings tend to cancel, resulting in a nearly polarization

free Cassegrain design.

The coatings specified for the lens surfaces are a two-layer

coating of the V coating family of designs. A region of solution

was found with the remarkable property that the linear

polarization and linear retardance both changed signs within 50

nm in wavelength of each other. Thus, by varying the thicknesses

of the layers, low polarization coatings with several different

useful properties were obtained. The two scalings used in the

design were 1.0 for the coating vi0c525 and 1.06 for vc105256.

These coatings have by far the lowest polarization effects of any

lens coatings investigated. Fabricating and testing samples of

these coatings should be conducted in the next study phase.

Table 20. Coatings Specified for the Magnetograph.

Name Type 5k_ber of Polarization Reflectance or Coating

Layers _agnitude Transmission Design

VLOC525

Q201

.82L)

L8onAl

.25L)2

Ant iref lection 2 4.9e-7 99.7%

Reflective 201 2.8e-4

Reflective 9 i.4e-4 99.65%

(.25H .25L)I00 .254H

H=1.52 L=1.45

99.98% (.062H

H=2.15 L=1.38

•38H .29L .26H

.25L (.25H

H=2.38 [,=1.38
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All the polarization analyses of thin films performed here

have assumed ideal, thin-film structures, materials which are

uniform, isotropic, homogeneous and free from scattering. This

is a sufficient assumption for the design and analysis of the

thin films. Actual thin films possess extremely complex

microstructure which contributes to scattering, inhomogeneity and

anisotropy. The typical thin film microstructure is an array of

columns growing up out of the substrate. This causes nonideal

coating properties which will impair the performance of the

system at some level.

The performance of the SAMEX magnetograph will be enhanced_

by using the finest coatings available, which will probably be

deposited using ion-assisted thin film deposition. By bombarding

the growing thin film with energetic ions, usually helium or

argon, the growing thin film structure is pressed down and

becomes denser (Martin, 1986). This disrupts the growth of the

large columnar structures which are responsible for much of the

scattering and anisotropy. The resulting films have lower

scatter and greater uniformity. The ion-assisted thin film

deposition technique is still new and not yet widespread in its

use.

As part of the preliminary efforts leading to the actual

fabrication of the SAMEX magnetograph, test coatings need to be

prepared and coating vendors qualified. Several coating

manufacturers should be contracted to produce small (2 x 2 inch)

samples of the specified coatings. These coatings should be

7O



tested for spectral transmission, polarization performance and

scatter (bidirectional reflection measurements) as part of the

final design and vendor qualification. The Marshall Space Flight

Center and the University of Alabama in Huntsville Center for

Applied Optics have the expertise for such coating

characterization. These data would then be used to calculate the

impact of the stray light coming from the coating scatter on the

magnetic field accuracy of the magnetograph.

3.7 Further Sources of Instrumental Polarization

Two effects that could degrade the polarization performance

of the SAMEX optics are coating anistropy and scattered light.-

Coating anisotropy is the variation of refractive index with

direction in the coating. Coating anisotropy can be measured

e11ipsometrically. It frequently occurs where coatings have been

deposited at non-normal incidence. Most coatings have a c61_mnar

microstructure which usually grows out of the substrate toward

the source. Fo=.a nonnormal deposition angle, the resulting

coatings have builtin birefringence. For the magnetograph

optical design, this additional coating-induced retardance is a

problem which must be held to acceptable levels in the final

coatings. A level of anisotropy below a root sum squared

birefringence of 0.0001 radians rms per coating is highly

desirable.

Scattering depolarizes light: the scattered light is random

and carries less information about its original polarization

state. Coatings, because of their detailed microstructure, may
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display substantial scattering. Considerable effort is being

devoted on many approaches to producing optics with reduced

scatter, including the ion-assisted deposition coatings already

mentioned. Scattering in the coatings of the foreoptics will

probably be the limiting factor in the accuracy of the

magnetograph, now that the instrumental polarization of the

Cassegrain telescope has been reduced by orders of magnitude.

3.8 Optical Tolerances

An optical tolerance study of the magnetograph is outside

the scope of this study. However we would like to point out the

areas of special study that are needed for a flight instrument.

The individual optical components need to be qualified for

spaceflight. This would include operation under a vacuum for an

extended period of time. The effects of particle radiation over

the lifetime of the spacecraft must be resolved. The mechanical

robustness of the optical system is to be defined. This would

include the effect of thermal drift on the optical alignment.

The general effects of mechanical fitting and sensitivity due to

fabrication errors need to be addressed, including surface

figure, tilts, decentrations, and optical coating variations.

The overall alignment and calibration procedures are to be

specified before the optical design is completed (Yoder, 1986).

72



4. CONCLUDING REMARKS

In this study we conclude theoretically, that the electromagnetic

soliton in a current sheet could trigger the resistive instability for an

uniform magnetic field configuration, which eventually turns in an

eruptive instability at the onset of the magnetic field reconnection.

Therefore, we may consider this physical scenario which could be a

candidate for solar flare triggering mechanism. Experimentally, we

presented an analysis of instrumental polarization of imaging optics.

This optical system cold accurately measure the polarization state of

sunlight in a narrow spectral bandwidth over the field view of an active

region to make an accurate determination of the magnetic field in the

region.
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APPENDTX

POLARIZATION ABERRATION THEORY

Introduction

This appendix describe the method which have been developed

to calculate'the instrumental polarization of the SAMEX optics.

A full development of the method is contained in "Polarization

Aberrations" by Chipman (1987). The calculation requires

performing thin film calculations during the optical design

process to determine the two parts (eigenvectors) of an optical

beam, as a function of the object and pupil coodinates.

The mathematical method of treating instrumental

polarization will be first discussed in terms of the Jones and C-

vectors and then the polarization aberration expansion will be

derived.

The Jones Hatrix and C Vector for the Characterization of

Polarization

The most efficient mathematical method for treating the

SAMEX instrumental polarization is the Jones calculus. The

Mueller calculus is a more difficult representation which

includes optical depolarization (scatters) properties. Such weak

depolarization effects are more readily handled by experimential

measurements. The Jones calculus (Jones 1941a-c,1942,1947, Azzam

and Bashara 1977, Theocaris and Gdoutos) is a mathematical

formalism for treating problems involving the description of

polarized light and polarizers which uses the Jones vector for



the description of polarized light and the Jones matrix to

characterize the polarizing properties of an optical element.

The details of the following discussion are given by Chipman

(1987). The elements of the Jones matrix and the C vector

characterization are outlined first.

Definition of the Jones Vector in terms of the Electric Field

Amplitudes

The Jones vector expression for the a quasi-monochromatic

plane wave propagating parallel to the z axis with electric field

amplitude

E(t) = Ex(t) + Ey(t)

where,

Ex (t) -- nx S0,x (t) cos[(kz-wt) + ex]

and,

A

_y(t) _ ny _0,y (t) cos[(kz-wt) + ey]

where nx and ny are direction unit vectors in the x and y

direction with the light propagation in the z direction. There

are 4 parameters E0, x, E0,y, e x, and ey defining the wave beside

the wavelength.

The time dependent Jones vector is defined in terms of the

electric field amplitudes as,



J(t)

Ey(t)

The components of J(t) are the instantaneous components of E(t).

The normalized Jones vector J is a time independent

normalized vector where all the vector components of J(t) have

been divided by the incident electric field amplitude,

J = J(t)/Eo(t ) .

The normalized Jones vector is referred to as "the Jones vector"

unless otherwise stated. Knowledge of J and E o provides all the

information necessary to reconstruct E(t) to within a constant

phase factor.

Table C-I lists the Jone_ vectors for the most common

polarization states: horizontal linear, vertical linear, +45

degrees linear, -45 degrees linear, right'circular and left

circular polarized light. These vectors can be multiplied by an

arbitrary phase factor without changing the polarization ellipse

of the light; it only changes the absolute phase.

Having established the vector which defines the polarization

state we now consider the matrices which represent the

polarization effect of the optical elements and allow

polarization calculations to be performed.
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Table C-l. The Basic Jones Vector Representation for Linear
and Circular Polarized Light

Linear Polarized Light

Horizontal

1Iol
Vertical +45 Degrees -45 Degrees

Circular Polarized Light

Right Circular

sili
i-1 t

,,g
where s =

2

Left Circular

s 1

In his original paper, Jones (1941a) shows that the

relationship between the Jones vector incident on a polarizer, J_

and that transmitted or reflected by a polarization element, J',

can always be related by a matrix, the Jones matrix, JJ. Only

certain transformations of the field components are allowed,

those describable by a matrix. Thus the fundamental relationship

between the vector components of the electromagnetic fields

before and after a polarizing element is,

j. =JJ J

The Jones matrix, JJ, is a two by two matrix with complex

elements,

JJ =
j(l,l) j(l,2)

j(2,1) j(2,2)



where j(k,1) = a(k,l) + i b(k,l) .

Thus the Jones matrix has eight degrees of freedom.

there are eight different forms of polarization behavior.

eight forms are listed in Table 2E. Every Jones matrix

corresponds to a physically realizable polarizer.

Thus

These

Sequences of Polarizers
I

The Jones matrix associated with an optical ray path through

a sequence of polarization elements is just the matrix product of

the Jones matrices for the individual polarizers. If an optical

ray traverses a series of elements, i, 2, ... Q, and the Jones

matrices appropriate to that ray for each element are, JJ(1),

Jd(2), ... JJ(Q), then the Jones matrix describing the

polarization properties of the system along this ray path is

given by the matrix product, _

JJ = JJ(Q) ... JJ(2) JJ(1)

Since the Jones matrix of an optical element is dependent

upon the wavelength, angle of incidence, orientation, and path

through the element, each ray in each wavelength will usually

have a different Jones matrix. Only if a collimated

monochromatic beam through a series of planar optical interfaces

can be assumed, then a single Jones matrix can be written for the

entire cross section of the beam. This is the case in the

polarimeter section of the magnetograph but not in the

foreoptics.
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Coordinate System

The Jones matrix is defined relative to an arbitrary x and y

coordinate system. Since these coordinates have been defined for

the Jones vector, the coordinate system of the Jones matrix is

defined in terms of the Jones vector coordinates.

It is often desirable to align the Jones vectors coordinates

with the s and p planes of an optical interface. Only for plane

surfaces does the orientation of the s and p planes remain fixed

across the surface. For nonplanar surfaces, it is necessary to

maintain two sets of coordinates, the global x and y coordinates

with respect to which the Jones matrix is defined, and a local s

and p coordinate for each individual point on the interface. The

local s and p coordinate system will have its x' and y' axes

aligned with the local s and p planes of the surface for the

evaluation of Jones matrices at given surface coordinates. Then,

these local Jones matrices will be rotated to bring all the

matrices into the global coordinate system.

Pauli Spin Matrix Basis and the C Vector

The Paull spin matrices form a most useful basis for

interpreting the Jones matrix "space" and define a basis set for

the JJ matrix. The identity matrix, a(0) and the Pauli spin

matrices, a(1), u(2), and u(3), are defined by:



_(0) _(1) _(2) 0(3)

An arbitrary Jones matrix will be expressed as,

3

JJ = Z c(k) a(k).

k=0

The c's are formed into a four element complex vector, the

"C vector". The C vector expression

C = [ c(0), c(1), c(2), c(3) ] ,

an equivalent representation of the Jones matrix,

JJ = c(0) _(0) + c(1) #(2) + c(2) _(2) + c(3) #(3)

=_c 3)

c(0) + c(1) c(2) - ic(

(2) + ic(3) c(0) - c(l

When necessary, p and # refer to the amplitude and phase portions

of the C vector elements, ""

C = [p(0) exp(_#(0)), p(1)exp(Y#(1)), p(2)exp(7#(2)), _(3))exp(Tp(3))]

The elements of C are related to the Jones matrix elements by the

equations:



c(O) -

c(1) =

(j(1,1) + j(2,2))/2 , c(1) =

(j(1,2) + j(2,1))/2 , c(3) =

(j(l,l)- j(2,2))/2 ,

(j(l,2)- j(2,1))/(-2Y).

The elements of the Jones matrix are related to the elements of C

by the equations:

i

j(l,l) = c(0) + c(1) , j(l,2) = c(2) - 7 c(1) ,

j(2,1) = c(2) + _ c(3) , j(2,2) = c(0) - c(1) .

The C vector, like the Jones matrix, has eight degrees of

freedom. Table C-2 contains a description of the meaning of the--

real and imaginary parts of the c vector elements.

TABLE C-2. Interpretation of the C Vector Elements

Matrix Coefficient Meaning

_(0) p(0) Amplitude Absorption
e(0) _(0) Phase Phase

a(1) p(1) Amplitude

_(i) $(i) PhaSe

0(2) _(2) Amplitude

_(2) _(2) Phase

_(3) p(3) Amplitude

u(3) _(3) Phase

Linear Polarization along Axes..

Linear Retardance along Axes

Linear Polarization, 45 deg

Linear Retardance, 45 deg

Circular Polarization

Circular Retardance
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The Jones Matrix and C Vectors for Specific Polarizers

Tables of Jones matrices for various polarizers are found in

Azzam and Bashara (1977, Section 2.2.3), Hecht and Zajac (1974,

Table 8.6), Shurcliff (1962, Appendix 2), and Theocaris and

Gdoutos (1979, Table 4.1). A table listing of the Jones matrices

and C vectors for the most common polarizers and retarders is

given in Chipman (1987, Table 6).

The Meaning of the Coefficients of the C Vector

The primary reason for the introduction of the C vector is

to simplify the representation of polarizers. Each of the

elements of the C vector represents a specific type of polarizer.-

behavior.

The real parts of the C vector all correspond to amplitude

effects, absorption and dichroism. The phase portion of the C

vector represent phase effects, propagation and birefringence.

The _irst element, c(0)=p(0)exp(i@(0)), is the coefficient of the

identity matrix. Thus it must represent effects that are

polarization state independent; these are amplitude and phase.

The last element, c(3)=p(3)exp(i%(3)), multiplies the spin matrix

a(3) which is rotation invariant. Thus the c(3) term represents

the circular polarization effects; p(3) describes circular

polarization or circular dichroism and %(3) describes circular

retardance or circular birefringence. The remaining two

elements, c(1) and c(2), represent linear polarization and linear

retardance. Linear terms require two degrees of freedom:

magnitude and orientation. Thus, p(1) and p(2) characterize



I¢

linear polarization or linear dichroism, p(1) in the 0 degrees

and 90 degrees directions, p(2) in the + and -45 degrees

directions. Likewise, @(i) and @(2) characterize linear

retardance or linear birefringence.

Rotated Polarizers

If a polarizer with Jones matrix' JJ is rotated through an

angle e (positive if counterclockwise), the Jones matrix becomes

JJ'(e) - RCe) JJ R(-e).

The R(8)'s are the Jones rotation matrices:

R(e) =
_cos(e) -sin(e_sin(B)" cos(e

The Jones rotation matrices obey the relations,

and,

R(a) R(b) -R(b) R(a)

R(a_ R(ua) = a(0).

= R(a+b)

The identity matrix is invariant under rotation;

RCe) a(O) R(-e) = a(O).

Under rotation, a(1) and u(2) couple into each other;



R(8) a(1) R(-8) = a(1)cos(28) + _(2)sin(28)

R(%) _(2) R(-%) =-a(2)sin(2%) + _(2)cos(28).

a(3) is invariant under rotation; R(8) a(3) R(-%) = a(3).

Having established the polarization calculus which describes the

polarization optics, we now apply these matrices to the SAMEX
i

optical system.

Instrumental Polarization

Two types of polarization calculations can be performed for

the SAMEX magnetograph: instrumental polarization and transmitte_

light polarization. The first is the calculation of the

polarization associated with ray paths through an optical

system. This determines the instrumental polarization function

as a function of pupil coordinates for a specified object

point. The other type of calculation determines the state of

polarization, such as a Jones vector, transmitted by the system

along a given ray path for a specified input polarization

state. By iterating this process, the Jones vector as a function

of position in the exit pupil is calculated. This Appendix deals

only with the instrumental polarization calculation. Once the

instrumental polarization function for the system is known, the

transmitted Jones vectors are readily determined for all input

polarization states.



Polarizers are optical elements which divide an optical beam

into two parts (Jones vector) and transmit those parts with a

different transmission coefficient and a different phase. The

two parts of the beam are referred to the eigenvectors or by the

more descriptive term, "eigenpolarizations." The two

eigenpolarizations are orthogonally polarized and are transmitted

by the polarizer with no alteration of their polarization states;

only the intensity and phase changes.

The word polarizer will be used to refer to both polarizers,

such as dichroic or prism type, which have a different

transmittance for the two eigenpolarizations, and retarders,

which have equal transmittance but a different phase change for

the polarizations. 'Polarized Light' by Shurcliff(1962) is the

standard reference on the types of polarizers, their definitions,

parameters and properties.

Transparent Systems

The SAMEX foreoptics are highly transparent and weakly

polarizing and the following calculational method is optimized

for this case. The ideal Jones matrix for a ray through a

transparent nonpolarizing system is

JJ( ideal ) = exp (7d)E_ 0__i

where d is the optical path length for the ray in radians. (The

complex value (-I)_2 is denote by _). The Jones matrix operation

on the Jones vector, which is composed of the two orthogonal
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amplitude components, define the transmitted state of the ray.

The above ideal Jones matrix is the identity matrix, which

signifies that the system has no absorption or polarization.

Since this is the desired form of the Jones matrix for the SAMEX

foreoptics, the approach developed here obtains the instrumental

polarization function as a TaYlor series of the system Jones

matrix in the ray coordinates about JJ(ideal). This approach is

easily modified for systems which are not highly transparent or

which contain strong polarizers by performing the Taylor series

about the Jones matrix for the ray down the optical axis. This

work deals primarily with this simpler version of the Problem,

transparent systems, to streamline the SAMEX calculations.

S-P Coordinates

To handle problems involving light at nonnormal incidence at

curved optical surfaces, it is necessary to maintain two separate

coordinate systems: x-y coordinates and s-p coordinates. The x-y

coordinates are the global x, y and z coordinate system used to

describe the optical system. The optical axis of radially

symmetric optical systems coincides with the z axis.

The s-p coordinates are used to perform polarization

calculations with the SAMEX coatings which are angle of incidence

dependent. Most frequently, the functional form of the interface

-polarization is known in s-p coordinates. Thus, the rational for

using s-p coordinates is that, typically, the Jones matrix for a

ray at an optical interface will be calculated in the s-p

coordinates. Then it will be rotated into the system x-y



coordinates. Once all the Jones matrices for the ray at all

surfaces have been rotated into ×-y coordinates, they can be

cascaded to give the instrumental polarization along that ray

path in the system x-y coordinates.

The s-p coordinates are based on the concept of the s and p

planes. Consider light with unit wave vector k (normalized to

one) incident at a surface with normal n. The plane of

incidence, or "p-plane" is the plane which contains k and n. The

plane perpendicular to the plane of incidence which contains k is

the "s-plane". Two unit vectors perpendicular to k are defined

to form an orthonormal basis for this coordinate system.

Instrumental Polarization

All optical elements display variation of their Jones

matrices as the angle of incidence changes. Further, this always

involves mo_e than just a variation in the intensity and phase of

the light; it also involves polarization and retardance. A fine

optical element used in a transparent system will not display

polarization effects at normal incidence; it may show some

absorption, reflection loss or phase shift, but notpolarization

or retardance.

The Jones matrix can be decomposed and can be expressed as

3

JJ =

k=0

-c o (

c(k) a(k) ,

1 0 i 0 0 1

) +c 1 ( )+c 2 (
0 1 0-i 1 0

o-7
)+ c3 (...

, 0



where _(k) are the identity matrix and the Pauli spin matrices

which describe the specific polarization state. The c(k) defined

a vector which then described the polarization properties of the

element. At an angle of incidence i, the C vector will have the

form

C i = (c(0,i),c(l,i),c(2,i),c(3,i)) =

(_(0,i)e _%(0,i), _(l,i)eT%(l,i), _(2,i)eT%(2,i), #(3,i)e7% (3,i))

where each component has an amplitude (_) and a phase (_) part.

The functional dependences of the C vector coefficients are

calculated from the Fresnel equations and coating equations for

the interface.

Weak 9olarfzers

A weak polarization element is defined as a polarizer having

a C vector such that for some range of i:

Such a polarization element transmits light in a polarization

state similar to the incident state with only weak coupling into

other polarization states. The polarization behavior is

dominated bY transmission with only traces of polarization or

retardance. Any polarization present is at the few percent level

or less, such that any linearly polarized incident beam has a

transmission coefficient which varies a few percent or less with



orientation. Similarly, the retardation is degrees or less, far

less than a quarter wave (_/2) retarder. Near normal incidence,

metals in reflection (e.g. telescope mirrors) and dielectric

refracting interfaces (e.g. relay lens) are weak polarizers. In

addition, near normal incidence, anti-reflection coated lenses

used in transmission and metals with reflection enhancing

coatings are typically weak polarizers for wavelengths near the

thin film design wavelength.

Amplitude Transmission Relations

The amplitude transmission equations for an interface are

the equations which relate the amplitude and phase of the

electric fields, E, at an interface. The most general amplitude

transmission equations for a nonscattering linear interface are:

I E'(s)] [a(ss) E(s)E'(p) a(sp) E(s)

+ a(ps) E(p) I

+ a(pp) E(p) J:-

where for this section, the plane of incidence will be aligned

with the y axis. This equation is equivalent to the Jones matrix

equation,

E' (p) a(ps) a(pp)J E(p

For interfaces whose eigenpolarizations are linear polarized

light oriented parallel and perpendicular to the plane of
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incidence, the transfer of energy across the interface is

separable into two uncoupled components which can be written in

the form:

E'(s) = aCs)E(s) = o(s) exp(i¢(s)) E(s)

E'(p) = a(p) E(p) = 0(p) exp(i¢(p)) ECp).

The amplitude transmission coefficients a(s) and a(p), or in

polar coordinates, _(s), ¢(s), p(p), and #(p), are determined by

the Fresnel equations for the interface. The type of energy

transfer equation, where the s and p equations are separable, is

a "separable amplitude transmission relation." Only polarization

elements with linearly polarized light as the eigenpolarizations

have the energy transfer equations in the separable form. This

includes all the elements and coatings used in the SAMEX

foreoptics.

The separable amplitude transmission relations correspond to

a diagonal Jones matrix in s-p coordinates. The Jones matrix and

C vector for an amplitude transmission interface in s-p

coordinates are:

JJ(i) =

r

a(s,i )

0 a(p,i)

and,



C = 1/2 [ a(s,i)+a(p,i), a(s,i)-a(p,i), 0, 0 ].

Taylor Series Representation of SAMEX Coatings

In optical aberration theory, expressions for the optical

path length of ray segments through the the optical system are

obtained by performing a Taylor series expansion on Shells law,

the law of reflection and the grating equation, to obtain
I

expressions for the optical path length as a power series

expansion in the ray coordinates. Thus Shells law,

n sin i = n' sin i' ,

is rewritten for i' as,

L

or

i' -- arcsin[ (n/n') sin i ]

i' = (n/n') i + [(n/n') 3) - (n/n')]i3/5 + O(i5) •

The polarization aberrations are generated in an analogous

fashion. To obtain the variation of the Jones matrix in the exit

pupil of a system, the appropriate coating equations are required

in Taylor series form. For radially symmetric optical systems,

expansions in the angle of incidence about normal incidence are

used.

An isotropic interface appears unchanged as it is rotated

about the surface normal. Ideally, and to a first approximation,

the SAMEX coatings are isotropic. So, for any isotropic
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interfaces the Fresnel equations are even functions since the

surface, does not distinguish between angles of incidence of +i

and -i.

An even function contains only even terms in its Taylor

series expansion about the origin. Thus, the Taylor series

representations of the coating equations has the form, where f(i)

is a reflection or transmission coefficient, of

)

f(i) = f0 + f2 i2 + f4 i4 + "'''

where

fn= l/n: d- i)). i=O"
di n

m

For weakly polarizing interfaces described by amplitude

transmittance relations, the Taylor series forms of the Jones

matrix and C vector are calculated as follows. First, the Taylor

series expansion is determined for the amplitude transmission

relations:

a(s,i) = a0(s) + a2(s) i2 + a¢(s) i4 + ...,

a(p,i) = a0(p) + a2(p) i2 + a4(P) i4 + ...,

Then, the Taylor series expansion about i=O in s-p coordinates

for the Jones matrix is,



a0(s) 0 a2(s) 0
JJ(i) - + i 2

0 a0( p ) 0 a2(P).

The corresponding C vector expansion in s-p coordinates is

C = [ c(0,0)+c(0,2)i 2 + ... , c(l,0)+c(l,2)i 2 + ... , 0, 0]

I

where the nth order c-vector component is given by

c(0,n) =

c(l,n) =

1/2 (an(S) + an(S))

1/2 (an(S) - an(S)).

A matrix equation to calculate c(0,n) and c(l,n) from thin film

program results is given by Chipman (1987). For the SAMEX

coatings characterized by separable amplitude transmission

relations, the diagonal and circular polarization components,

c(2,a) and c(3,n), are always zero. The normalized C vector for

the separable amplitude transmission relations is

C = t [ l+d(0,2)i 2 + ... , d(l,0)+d(l,2)i 2 + ... , 0, 0 ]

where

t= c(0,0) and d(k,n) = c(k,n)/c(0,0) .

The Jones matrix and C vector for coordinates other than the

s-p coordinates are obtained from the polarization rotation

operation. For example, the s-p coordinates are rotated with



respect to the x-y coordinates by e, the orientation of the plane

of incidence. The Jones matrix in x-y coordinates JJ(x,y) is

related to the Jones matrix in s-p coordinates JJ(sp) by the

equation

JJ(x,y) = R(-8) JJ(s,p) R(%).

The Taylor series coefficients for the Fresnel equations

which govern an uncoated dielectric or metal surface have been

determined for use in determining the instrumental polarization

of a conventional Cassegrain telescope. The notation a(s) and

a(p) will refer tO either the reflected or transmitted amplitude

transmission coefficient, while t(s), t(p), r(s) and r(p) are

used to refer unambiguously to the transmitted or reflected

components. The Fresnel amplitude transmission equations are:

t(s,i) = ( 2 cos i sin i')/(sin(i+i'))

= (2n cos i)/(n cos i + n'cos i')

t(p,i) = ( 2 cos i sin i')/(sin(i+i') cos(i-i'))

= (2n cos i)/( n' cos i+ n cos i')

r(s,i) = (-sin(i-i'))/(sin(i+i') )

= ( n cos i - n' cos i')/( n cos i + n' cos i')

r(p,i) = (tan(i-i'))/(tan(i+i'))

= ( n' cos i - n cos i')/( n' cos i +n cos i')



The Fresnel equations depend on the ratio of the indices, n and

n' but not on the values of the refractive indices
I

individually. This relative refractive index ratio is defined as

N = n/n I .

i

The Fresnel equations are equally valid for real n, corresponding

to transparent media, or complex n, corresponding to absorbing

media or metals.

The second order Taylor series expansions for the Fresnel

amplitude coefficients about i=0 are:

t(s,i)

t(p,i)

r(s,i)

r(p,i)

= (2 N)/(N+I) + i2 (N(N-I))/(N+I) ,

= (2 N)/(N+I) + i2 (N2(N-I))/(N+I) ,

= (N-I)/(N+I) - i2 (N-I)/(N(N+I)) ,

= (N-I)/(N+I) + i2 (N-I)/(N(N+I)) .
&,

The direct method for calculating the Taylor series

coefficients of a coating series given in the last section are

impractical for multilayer coatings due to the complexity of

calculating the partial derivatives of the appropriate amplitude

transmission equations. The Taylor series coefficients can be

obtained numerically from the s and p amplitude transmissions

evaluated at a series of angles of incidence. An algorithm to

sixth order has been given by Chipman (1987). The algorithm was

used with the thin film design programs Filmstar and Films to



obtain the Taylor series expansions of the transmitted and

reflective amplitudes as a function of the angle of incidence for

use in the polarization aberration calculations for SAMEX.

CASCADED WEAK POLARIZERS

In this section the Jones matrix describing the instrumental

polarization for light propagating along a ray path through the

SAMEX foreoptics is derived. Results are also given for the

instrumental polarization associated with paraxial rays as

functions of the Taylor series of the C vectors representing the

optical interfaces. The notation used in this section is

compiled in Table C-3.

Table C-3. Notation for Section

C

c(k)

d(k)

i
JJ

k

d

q
O
V

r(k)

t

p(k)

C vector

d(k) coefficients rotated into arbitrary plane of
incidence

Normalized C vector components in s-p coordinates

Angle of incidence
Jones matrix

Paull spin matrix index: 0,1,2,3

Length of a ray segment
Surface index

Total number of surfaces

Orientation of the plane of incidence

Absorption or polarization coefficient

Pauli spin matrix
Normal transmittance

Phase or retardance coefficient

Subscript Ordering: k, i, q.

For example, d(1,2,3), is the coefficient for:

the a(1) polarization basis state, that is second

o_der in the angle of incidence Taylor series,
i_, for q=3, the third interface.



Consider an optical system with Q optical interfaces

numbered in the order encountered from q=l to Q. No symmetry

regarding the optical configuration is assumed. Light propagates

along a specified ray path such as would be calculated by an

optical ray trace calculation. At each interface some

polarization is introduced due to differences in the optical

constants across the interface. In addition, polarization is

associated with the ray path between interfaces due to optically

active crystals, dichroism, birefringence, gradient index

materials or other polarizing mechanisms. But for the

polarization analysis for SAMEX foreoptics, polarization

associated with the optical path between interfaces was zero.

Therefore only interface induced polarization is considered here.

p

Homogeneous Optical Systems

A homogeneous interface has optical progerties independent

of spatial coordinates on the interface. The Jones matrices are

functions only of the angle of incidence, plane of incidence, and

optical properties of the interface media, JJ = dJ(i,%,n,n') and

similarly C = C(i,e,n,n'). The foreoptics and polarimeter

sections of the SAMEX Magnetograph are homogeneous optical

systems.

Likewise, a homogeneous medium has optical properties

independent of spatial coordinates. An anisotropic crystalline

medium is homogeneous if it consists of a single crystal. The

refractive index varies with direction but not with position.



Radially Symmetric Systems of Lenses, Mirrors and Coatings

The polarization properties of optical systems comprised of

lenses, mirrors and "fine" coatings will be developed. A

radially symmetric optical system has an axis of symmetry, the

optical axis. It is assumed that the optical elements and

materials used in transmissian are highly transparent and

nonpolarizing, as is usual in lenses. The polarization

contribution from the path lengths through highly transparent

elements is small relative to the polarization arising at the

interfaces and is neglected.

The polarization associated with ray paths near the optical

axis, or in the paraxial regime, will be derived. For this

paraxial development to be accurate, it is only necessary that

the angles of incidence are small enough that the polarization

associated with the interfaces is adequately approximated by a

second order expansion of the C vector as a function of the angle

of incidence. For an uncoated lens or mirror, this approximation

is generally valid for i < 30 degrees. Calculation of the fourth

and higher order coefficients allows estimation of the accuracy

of these second order equations. The paraxial region for this

polarization analysis is typically orders of magnitude larger

than the paraxial region of geometrical optics (the region where

the fourth and higher order wavefront aberrations are

negligible.)

Homogeneous and isotropic interfaces do not display

polarization at normal incidence. There is only an amplitude and



Homogeneous and isotropic interfaces do not display

polarization at normal incidence. There is only an amplitude, and

phase change which is represented by the complex number, t, the

normal amplitude transmittance. An isotropic interface such as a

lens, mirror or coating has a C vector Taylor series in s-p

coordinates (8 = 0) of the form

c(i'e)le = 0 = t [I,0,0,0] + i2 t [d(0,2),d(l,2),0,0] +

+ i4 t [d(0,4),d(l,4),0,0] + ...

For an arbitrary orientation 8 of the plane of incidence, the C

vector is 1 _

C(i,8) = t [I,0,0,0] + i 2 t [c(0,2)t,c(l,2)t,c(2,2)t,0]

+ i 4 t [c(0,4)t,c(l,4)t,c(2,4)t,0] + ...

where the c's are determined from the d's by a rotational change

of basis. Since homogeneous and isotropic interfaces do not

display circular retardance or circular polarization, a(3) is not

included to simplify the mathematics.

The C Vector for a Paraxial Ray

The SAMEX instrumental polarization will be analyzed by a

paraxial optics development. Consider a paraxial ray path

through an optical system from surfaces q=l to Q with angles of

incidence, i(q), and orientations of the plane of incidence,

8(q). The Jones vector associated with the axial ray (down the
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optical axis,) i(q)=0 for all q, is

JJ = t(q) _(0) t(q-l) a(0)...t(2) _(0) t(1) u(0) = T _ (0)

where

0

T = t(q)
q = 1

The complex amplitude transmittance down the axis, T, is the

product of the normal incidence complex amplitude transmittances

at each surface.

The Jones matrix associated with a ray at interface q can be

expressed in terms of the expansion of the interface Jones matri_

as

JJ(i,v,q) = t(q) Is(0)+ i2(q)(c(0,2,q)s(0)+c(l,2,g)u(1)+c(2,2,q)u(2))

+ i4(q) (c(0,4,q) s(0)+c (_,4,q) _(I)+c(2,4,q) _(2) )+... ]

The Jones matrix associated with the entire paraxial ray

path resulting from keeping terms to second order at each

interface is (where X represents multiplication carried onto the

next line)

JJ = t(q)(a(0)+ i2(q)c(0,2,q)_(0)+c(l,2,q)a(1)+c(2,2,q)_(2)) X

t(q-l)(a(O)+i2(q-l)(c(O,2,q-l)a(O)+c(l,2,q-l)_(1)+c(2,2,q-l)a(2))

t(2)(a(0)+i2(2)(c(0,2,2)_(0)+c(l,2,2)a(1)+c(2,2,2)a(2))X

t(1)(a(0)+i2(1)(c(0,2,1)_(0)+c(l,2,1)a(1)+c(2,2,1)o(2)).



Associated with each interface are four terms. Carrying out all

the multiplications leads to 4Q terms, all in even powers in i.

Collecting terms of equal power in i, there is one term at

zero'th order and 3Q terms at second order. If i is assumed

small, the large number of higher order terms are of diminishing

importance. Collecting zero and second order terms in JJo and

JJ2 the expression for JJ is

JJ0 + JJ2 = T u(0) + T u(0)

Q

q=l

+ T _(I)

+ T _(2)

i2(q)c(0,2,q)

Q

q-I

i2(q)c(l,2,q)

Q

q=l

i2(q)c(2,2,q).

Since no polarization or retardance was assumed on axis, the
..

contributions to the second order polarization for this ray are

just sums of contributions from each surface. The multiplication

taking place at second order for the a(1) term is of the form

i2(q)a(1)_(0)a(0)_(0)..._(0) ÷ a(0)i2(q-l)_(1)u(0)_(0)..._(0) +

... + _(O)_(O)_(O)c(O)...i2(q)a(1)

where the c-dependence is not shown explicity.

This equation contains the useful result that, when no

elements display polarization or retardance at normal incidence,

as in the SAMEX foreoptics, there is no order dependence in the



second order terms. Only one non-identity matrix term occurs in

each second order matrix product. The second order polarization

associated with the paraxial ray path is obtained by a simple

summation of second order polarization contributions at each

intercept. Chipman (1987) gives a complete account of this

derivation.

Paraxial Optics Geometry

The polarization aberrations Eor SAMEX are a description of

the polarization behavior of an optical system expressed as an

expansion about the center of the object and _he center of the

pupil. Thus it is appropriate and convenient to obtain the

derivations from a paraxial ray trace; appropriate, because

understanding the instrumental polarization near the center of

the pupil and image is key to understanding instrumental

polarization in general; convenient because the paraxial ray

trace is linear, and thus easy to manipulate.

The paraxlal coordinate system used is a normalized right

handed coordinate system. The z axis is the optical axis of a

rotationally symmetric optical system. Light initially travels

in the direction of increasing z. Figure C-I shows the notation.

For a rotationally symmetric system, the object can be

located on the y axis without loss of generality. The object

coordinate H is normalized such that H = 0 in the center of the

field (on the optical axis) and H = 1 at the nominal edge of the

field of view.

The location where a ray strikes the entrance pupil is



, _ .

H

X

PUPIL

Figure C.I. Paraxial coordinate system. The paraxial system is

a normalized rlght-handed coordinate system. The z axis is the

optical axis of a rotationally symmetric optical system,.light

initially travels in the direction of increasing z. Rays through

an optical system are characterized by ray coordinates at the

object and entrance pupil. H is the no_alized object coordinate,

is the normalized pupil radius, and % is the polar angle in the

pupil measured counterclockwise from the y axis. The normalized
Cartesian coordinates in the pupil are x and y. The chief and

marginal rays are also shown.



specified by the polar pupil coordinates __ and 4" p is

normalized such that at the edge of a circular pupil p = 1 .

The angle # is defined here as it is in much of geometric optics,

and in defiance to most analytical geometry, as being zero on the

'y axis' and increasing counterclockwise. Normalized Cartesian

pupil coordinates x and y can be used. They are defined as:

x = p sin(_) and y = _ cos(_).

Expressions for the angle of incidence i and the orientation

of the plane of incidence # of a ray at a given surface q will be

expressed in terms of the m__arginal i(m,q) and c._hief ray i(c,q)

angles of incidence at that surface. Details of the derivation

may be found in Chipman ( 1987, section D). Note, however, for a

radially symmetric system the angle of incidence should be a -

function of H 2 2, 0 , and Hpcos_ since the function should be

invariant to rotation of the system about the optical axis and

must give the same result when -x is substituted for +x where

x = pcos@.

Assume that a paraxial ray trace has been performed for a

specific system and that i(m,q) and i(c,q) have been

calculated. A ray from normalized object coordinate H which

passes through pupil coordinates p and # will have an angle of

incidence i(q) and orientation of the plane of incidence @(q) at

surface q equal to:

i(q) = [H2i2(c,q) + 2Hp cos(_) i(c,q) i(m,q) + p2 i2(m,q)] _2

@ = sin -I [p sin(%) i(m)/li I] .
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Figure C-2 shows the paraxial angle and plane of incidence

for three field angles. The magnitude of the angle of incidence

is represented by the length of the lines. The orientation of

the lines corresponds to the orientation of the plane of

incidence. Note that off axis, the pattern is a shifted version

of the on axis pattern. The incidence angle is given by the

pupil coordinate (_,_) and the image 'coordinate (H) since these

coodinate define the optical path of a single ray.

POLARIZATION ABER_%TIONS

Introduction

This section derives the polarization aberrations for SAMEX-

as a Taylor series description of the instrumental polarization

associated with paraxial rays through the foreoptics.

Polarization aberration is a description of the polarization

behavior of an optical system expressed by a expansion about the

center of the object and center of the pupil. Table C-4 gives an

overview of polarization aberration theory. The results are

obtained in a form very similar to the wavefront aberrations. In

particular, terms closely related to defocus, tilt, piston error

as well as the Seidel and higher order aberrations can be

associated with all eight of the basis Jones matrices. Since

polarization effects are typically orders of magnitude smaller

than wavefront effects, fewer terms are needed for a sufficient

description. A method of calculating aberration coefficients for

specific systems is developed in the next section.
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Figure C.2. Paraxlal angles and plane of incidence for three

field angles. The magnitude of the angle of incidence is

represented by the length of the lines. The orientation of the

lines corresponds to the orientation of the plane, of incidence.

Note that in the off-axis cases, the pattern is a shifted version

of the on-axis pattern.



Table C-4. Polarization Aberration Theory Outline

(i)

(2)

Jones Vector

The Jones vector is a complex

2-component vector describing
the electromagnetic field.

Paraxial Ray Trace

The angle of incidence, i, of any

ray can be written in terms of the

angle of incidence of the chief

and marginal rays, i(c) and i(m).

(3) Coating Calculation

Thin film design programs

calculate the amplitude
transmission coefficients for s

and p light, t(s,i) and t(p,i).

(4) Taylor Series Representation

The amplitude transmission

coefficients, t(s,i) and t(p,i),

are transformed to with a Taylor

series expansion about normal
incidence.

(5) Jones Matrix for an Interface

The second order Jones matrix for

an interface can be written in terms

of three Polarization Aberration

terms represented by coefficients.

(6) Aberrations Sum for System

The second order polarization

aberrations for the system is
the sum of the aberration

contributions of each interface.

(7) Polarization Accuracy

Summarize the performance of the system

with a single number, the polarization

accuracy (&p). This is the maximum

fraction of light coupled into the

orthogonal polarization state. This

occurs at the edge of the field of view.

Ex

J- ( )
Ey

i(c), i(m)

t(s,i), t(p,i)

t(s,i) = to(l + tCs,2)i 2 ÷ ..,

t(p,i| = to(l + t(p,2)i 2.+ =..

P(l,0,2,2,q), P(l,l,l,l,q),

P(l,2,0,0,q)

P(I,0,2,2) =

P(I,I,I,I) =

P(I,2,0,0) =

P(i,0,2,2,q)
q

r P(l,l,l,l,q)
q

Z P(l,2,0,0,q)
q

&p



The Polarization Aberration Expansion

The wavefront polynomial expansion describes the variation of

the optical path difference through an optical system as a function

of ray coordinates. A closely related expansion will be presented

for all four basis polarization matrices a(0), a(1), _(2), _(3).

The polarization aberration expansion for radially symmetric

systems uses a very similar polynomial expansion to describe all

eight basis polarization vectors. The principal difference is a

modified form [or the linear polarization and linear retardance

terms since these involve both a magnitude and an orientation.
.

The eight forms of polarization behavior can be

characterized by four complex numbers, for example, the four

elements of either the Jones matrix or the C vector. _

introduce a new set of complex parameters, the complex

polarization aberration coefficients which gives a description of

the polarization behavior of an optical interface. It should be

emphasized that the amplitude and phase of the coefficients are

generally unrelated. They refer to different aspects of the

instrumental polarization. The amplitude part of the coefficient

describes amplitude and polarization effects while the phase part

describes phase and retardance. _en necessary the amplitude and

phase of the polarization aberration coefficient, P, will be

denoted by A and # where,

P = A exp(7 _) .



The complex aberration coefficient is written to contain

polarization, amplitude, effects, retardance, and phase effects

in a single term. The following polarization aberration

expansion for zeroth and second order is used. The subscripts

are defined as follows:

P(k,u,v,w) = A(k,u,v,w) exp(Y$(k,u,v,w)) ,

where: k is the type of polarization behavior,

u is the order of the H dependence, H u,

v is the order of the p dependence, 0v, and,

w is the order of the _ dependence, (cos(_)) w

The indices u, v, and w are used exactly as they are for the

wavefront aberrations, as shown in the next section.

The polarization aberration expansion of the Jones matrix

for the SAMEX foreoptics is

JJ(H,_,_) :

3

£ c(k,H,,r,p) _(k)

k=0

3

= Z Z E _ P(k,u,v,w) Hu p v cos w (_) _(k).

k=0 u v w

Here we define the aberration coefficients as an expansion of the

Jones matrix in terms of the ray coordinates _, #, and H.

The C vector coefficients in this polarization aberration

expansion are:
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Amplitude and Phase term:

c(0,H,0,_) = A(0,0,0,0) + A(0,2,0,0)H 2 ÷

2
+ A(0,1,1,1) H 0 cos(0) + A(0,0,2,0)

+ T( #(0,0,0,0) + #(0,2,0,0)H 2

2
+ #(0,1,1,1)H _ cos(0) + #(0,0,2,0) _ ),

i

Linear Polarization and Retardance terms:

c(I,H,_,0) = A(I,0,0,0) + A(I,2,0,0) H2 +

+ H 0 (A(I,I,I,I) cos(0) - A(2,1,1,1) sin(0))

+ _2(A(1,0,2,0) cos(20) - A(2,0,2,0) sin (2%))

+ 7 (#(i,0,0,0) + #(I,2,0,0) H 2 + " "

H D (#(i,I,i,i) cos(0) - #(2,1,I,I) sin(#))+

2(%(i,0,2,* 0) cos(2#) - #(2,0,2,0) sin(2#)))

Diagonal Polarization and Retardance terms:

c(2,H,_,#) = A(2,0,0,0) + A(2,2,0,0) H2 +

+ H p (A(2,1,1,1) cos(0) + A(I,I,I,I) sin(#))

+ p2 (A(2,0,2,0) cos(20) + A(I,0,2,0) sin (2#))

+ _ (#(2,0,0,0) + #(2,2,0,0) H 2 +

H p (#(2,1,i,i) cos(#) + #(I,i,i,i) sin(#))+

2 2,0) Cos(20) - #(1,0,2,0) sin(2#) ))(#(2,0,

Circular Polarization and Retardance terms:



C(3,H,_,_) = A(3,0,O,O) + A(3,2,0,0)H 2 +

2
+ A(3,1,1,1) H 0 cos(_) + A(3,0,2,0) 0

+ Y ($(3,0,0,0) + _(3,2,0,0)H 2

2
+ _ (3,1,1,1)H 0 cos(%) + #(3,0,2,0)_ ),

There are thirty two terms in this polarization aberration

expansion to second order arising from four terms in each of the

eight degrees of freedom of the Jones matrix. The terms may be

grouped as follows:

A(0,u,v,w)

A(I,u,v,w)

A(2,U,V,W)

A(3,U,V,W)

_(0,u,v,w)

_(l,u,v,w)

$(2,u,v,w)

_(3,u,v,w)

P(k,O,O,O)

P(k,2,0,O)

P(k,l,l,l)

P(k,O,2,0)

P(k,O,2,2)

Amplitude terms

Linear polarization terms

Diagonal polarization terms

Circular polarization terms

Wavefront or phase terms

Linear retardance terms

Diagonal retardance terms

Circular retardance terms

"Constant Piston" terms

"Quadratic Piston" terms

"Tilt" terms

"Scalar Defocus" terms

"Vector Defocus" terms

The names of the wavefront aberrations: piston, quadratic

piston, defocus and tilt, are used here in an extended sense, to
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describe variations of components of the Jones vector which share

the same functional dependences as the wavefront aberrations.

Defocus is a p2 variation of a parameter. Tilt is H _ cos(%)

variation. Quadratic piston is H 2 variation. Thus, "amplitude

defocus" means a _2 amplitude variation. Likewise the "circular

retardance tilt" is a the H _ cos(_) circular retardance

variation, and so on.

This polarization aberration expansion is an equation which

describes all possible second order variations of the Jones

matrix, just as the second order wavefront aberration expansion

spans the set of all second order wavefront variations. Thus the

polarization aberra'tion expansion characterizes quadratic

variations of all forms of wavefront, amplitude, polarization and

retardance.

This polarization aberration expansion is a summation of

terms in the different Pauli spin matrix components, not a

product. Thus the four C vector elements can be pictuled as

acting in parallel, almost side by side in the aperture, but not

in series. Each term describes an amount of a particular form of

polarization, independent of the other contributions.

An "aberration term" is to be considered as containing all

the algebraic terms in the expansion with the same coefficient.

Most of the coefficients occur only once and the aberration term

contains only one algebraic term. The exceptions are the terms,

A(I,I,I,I), #(i,I,I,I), A(I,0,2,2), _(I,0,2,2), A(2,1,1,1),

#(2,1,i,I), A(2,0,2,2), and ¢(2,0,2,2). These aberration terms

have components both along the axes and at 45 degrees.



With SAMEX, the principal concerns are with the linear

piston, linear tilt and linear defocus terms, both in

polarization and retardance. These are going to be the largest

terms present which corrupt the incident polarization state.

These values are given in the Table 19 for SAMEX.

For a detail discussion of the physical meaning of the

polarization aberration coefficients see Chipman (1987), however

a discussion of the orgin of tilt and piston, P(0,2,0), P(l,l,l),

and P(2,0,0) terms is included below.

A distinction is made between scalar and vector

aberrations. The wavefront aberrations are scalar aberrations,

single valued functions of object and pupil coordinates. The

linear polarization and linear retardance aberrations are vector

aber!ations since a magnitude and orientation is associated with

these at each point. Amplitude, circular polarization and

circular retardance aberrations are scalar since they are single

valued and range positive and negative.

Figure C-3 (top) shows the chief and limiting rays at an

interface for objects on axis and at the edge of the field of

view. Figure C-3 (bottom) is a plot of the value of the angle of

incidence along the y axis as a function of _. Tilt terms

naturally occur because as the object point moves off axis, the

angle of incidence increases at one edge of the beam and

decreases at the other edge. Tilt contains the first order

portion of this correction.

Figure C-4 shows the off-axis angle of incidence squared and

the decomposition of this into defocus, tilt and piston terms.
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Figure _ Angles of incidence for objects on and off axis. In.

the top frame, the chief and limiting rays at an interface are

shown for objects on the optical axis and at the edge f the

field of view. In the lower part of the figure, the angle of

incidence for rays incident along the y axis (in the paraxial

system) is plotted as a function of the normalized radius p. ,
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Figure _ Quadratic effects of off-axis angles of incidence.
The squaTe of the off-axis angle of incidence is shown along with

its decomposition into defocus, tilt and piston terms.



These terms are required to describe a quadratic variation whose

vertex is located at an arbitrary position on the y axis because

x2 + (y_a)2 = x2+ y2 _ 2y a + a 2 .

In this case since a is a linear function of H,

a = k H ,

then the quadratic polarization variation becomes

c(x 2 + (y-kH) 2) = c(x2+y 2) - 2c y k H + c k2H 2

= P(0,2,0)_ 2 +P(I,I,I)2H _ cos(C) + P(2,0,0)H 2,

where P(0,2,0), P(I,I,I), and P(2,0,0) are the defocus_ tilt and

quadratic piston aberration coefficients and the polarization

index is not shown. Tilt and piston termsarise naturally from

decentered defocus. Similarly, the fourth order wavefront

aberrations coma, astigmatism, field cdrvature and distortion

4
arise naturally from decentered spherical aberration, _ .
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CALCULATION OF ABERRATION COEFFICIENTS

The method used to calculate the second order polarization

aberration coefficients for the SAMEX foreoptics given the C

vector power series for each interface is detailed in this

section.

Single Surface Aberrations for Amplitude Transmittance Relations

For homogeneous and isotropic interfaces characterized by

amplitude transmittance relations, such as lenses, mirrors and

thin film coatings, the polarization aberrations at a interface

simplify considerably. At these interfaces the Fresnel equations

and related thin film equations are separable into s and p

components, so the Jones matrices representing the interface in

s-p coordinates are diagonal. The off-diagonal terms, diagonal

polarizatfon o(2) and circular polarization _(3), are not

present. Further, with isotropic media, the s and p amplitude

transmission coefficients at normal incidence must be equal.

Thus the amplitude transmission functions can be expanded as:

a(s,i) = a(0)(l + a(s,2)i 2 +...) exp(Y(d(0) + d(s,2)i 2 +...)

t (l+(a(s,2) + _ d(S,2))i 2 +...) ,

a(p,i) = a(0)(l + a(p,2)i 2 +...) exp(Y(d(0) + d(2,p)i 2 ÷...)

t (i + a(p,2) + _ d(p,2)i 2 +...)

where:



t = a(O) exp( Y d(O)).

The s-p coordinate Jones matrix expansion to second order is

JJ(i) =
_0 a(s'i) 01

a(p,i)

= t (u(0)(l + A(2) + _D(2))i 2) + u(1)(a(2) + _d(2))i2).

where

A(2) = (a(s,2)+a(p,2))/2,

a(2) = (a(s,2)-a(p,2))/2,

D(2) = (d(s,2)+d(p,2))/2,

d(2) = (d(s,2)-d(p,2))/2,

The s-p coordinate C vector Taylor series expansion to second

order is

C(i) = t (I,0,0,0) + i2 t (A(2)+YD(2), a(2)+Yd(2), 0, 0).

The x-y caordinate C vector Taylor series for orientation of the

plane of incidence 8 is
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C(i,e) _ t(l,0,0,0) + i2 t (A(2)+YD(2),

(a(2)+Yd(2))cos(2e), (a(2)+id(2))sin(2e), 0).

The normal-incidence polarization aberration terms (the constant

piston terms) are zero:

P(I,O,O,O) = P(2,0,O,O) = P(3,0,O,O) = 0 •

There is no polarization or retardance on axis, only the

amplitude and phase transmission factor t.

All terms for off-axis diagonal and circular polarization

are zero:

P(2,u,v,w) - P(3,u,v,w) - 0 .

Thus, the single surface C vector in paraxial coordinates is

obtained by substituting the paraxial representation of i(H,0,%)

and v(H,p,#) into C(i,v) yielding
.T

c(0,H,O,_) " t + t d(0,2)[ H2 i2(c)

+ 2H p cos(%) i(c)i(m) + 02 i2(m)]

c(I,H,o,#) = t d(l,2) [ H 2 i2(c)

+ 2H 0 cos(#) i(c)i(m) + 0 2 cos(2#) i2(m)]

c(2,H,0,#) = t d(l,2) [ 2H 0 sin(#) i(c)i(m)

+ 02 sin(2#) i2(m)]



c(3,H,_,_) = O.

Since there is no diagonal polarization, the only contributions

to c(2) arises from the rotation of linear polarization from the

s-p coordinates into the x-y coordinates.

Polarization Aberration Coefficients for Systems

Since the polarization aberrations are only being evaluated

to second order in .the angle of incidence, the difference between

spheres, parabolas, conics or other radially symmetric aspherics

does not occur at this order. The relevant shape parameter here

is only the vertex radius of curvature. The angle and plane of

incidence differences between these types of interfaces are the

same at second order but will differ at fourth order and higher.

For surfaces q=l to Q, each surface is characterized by _

three complex parameters from the normalized C vector expansion:

d(0,0) = t(q), d(0,2,g), and d(l,2,q) .



The single surface polarization aberration coefficients are:

P(0,0,0,0,q)

P(0,2,0,0,q)

P(0,1,1,l,q)

P(0,0,2,0,q)

P(l,2,0,0,q)

P(l,l,l,l,q)

P(l,0,2,2,q)

= t(q)

= t(q) d(0,2,q) i2(c)

= 2t(q) d(0,2,q) i(c)i(m)

= t(q) d(0,2,q) i2(m)

= t(q) d(l,2,q) .i2(c)

= 2t(q) d(l,2,q) i(c)i(m)

= t(q) d(l,2,q) i2(m).

The polarization aberration coefficients for the system are

calculated by chain multiplying the single surface polarizatio_

aberration expressions and keeping terms to second order in H and

p. The zero and second order Jones matrices for the q'th

interface are: .

JJ0(q,H,0, %) = P(0,0,0,0,q) a(0) = d(0,0,q) a(0) = t(q) o(0),

JJ2(q,H,p,_] = 0(0) [H 2 P(0,2,0,0,q) + 2H p cos(%)P(0,1,1,l,q)

+ p2 P(0,0,2,0,q) ]

+ o(1) [ H 2 P(l,2,0,0,q) + 2H p cos(%)P(l,l,l,l,q)

+ 02cos(2%)P(l,0,2,2,q) ]

+ 0(2) [ 2H _ sin(%)P(l,l,l,l,q) + p2sin(2_)P(l,0,2,2,q) ]



- a(0) t(q)d(0,2) [ H2i2(c) + 2H p cos(#)i(c)i(m)

+ o2i(m)2 .]

+ _(i) t(q)d(l,2)[H 2 i(c) 2 + 2H p cos(_)i(c)i(m) + p2cos(2_) i2(

I

+ _(2) t(q)d(l,2)[ 2H p sin(%)i(c)i(m) + p2sin(2#)i2(m) ] .

Multiplication of the single surface Jones matrices yields

JJ(H,r,p) =

q=Q, -I

JJ(q,H,p,%)

= q=Q,-i [ Ja0 (q) + JJ2 (q'H'p'@) 1"

Since JJ0(q) is a constant function, independent of H, 0, and #,

the (H,p,#) dependence can be dropped. This expression contains

2 Q terms. The order of a term is the sum of the powers of H

and p, H u pV cos(_)w , i.e. order = u + v .

There is one first order term and O second order terms.

The zero order Jones matrix is



= _ = _ t(q) - T
JJ0 q=Q,-i JJ0 (q'H'_'_)) q=l

the system amplitude transmittance. The second order Jones

matrix is greatly simplified since, for isotropic surfaces, all

zeroth order Jones matrices are a constant times the identity

matrix _(0). The second order only contains products which

contain a single second order term.' The second order Jones

matrix is

JJ2(H,_,_) jj2(q, H p,#)
q=l,Q

At second order the weakly polarizing isotropic interfaces do mot

display order dependence. The product of any two second order

terms is fourth order. The order dependence enters at fourth and

higher order. Second order is a simple sum of polarization

contributions. Collecting the piston, tilt'and defocus terms

from the second order Jones matrix provides the coefficients for

the system polarization aberration expansion to second order:

P(0,0,0,0) = T ,

P(0,2,0,0) = T
q=l,Q

P(0,1,1,1) = 2T
q=l,Q

Z

P(0,0,2,0) = T q=l,Q

P(I,2,0,0) = T
q=l,Q

P(I,I,I,I) = 2T
q=l,Q

P(I,0,2,2) = T
q=l,Q

d(0,2,q) i2(c) ,

d(0,2,q) i(c)i(m)

d(0,2,q) i2(m) ,

d(l,2,q) i2(c) ,

d(l,2,q) i(c)i(m)

d(l,2,q) i2(m) •
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The other three zero order coeEficients and the other six second

order coefficients are all zero:

P(l,0,0,0) = P(2,0,0,0) = P(3,0,0,0) = 0 ,

P(2,2,0,0) = P(2,1,1,1) = P(2,0,2,0) = 0 ,

P(3,2,0,0) = P(3,1,1,1) = P(3,0,2,0) = 0 .

The amplitude and polarization coefficients are the real

parts of the P coefficients

%(k,u,v,w) = Re(P(k,u,v,w)) .

The retardation coefficients are the imaginary parts

Q(k,u,v,wT = Im(P(k,u,v,w))

The polarization aberration coefficients are calculated for the

foreoptics f_om the paraxial geometry and the normalized C-

vectors for the coatings and interfaces.

r

Polarization Accuracy

The Jones vector gives the amplitude of the electric field

and the square of the amplitude gives the intensity of the

components. With the Jones matrix one is able to calculate the

polarization effects for the optical system. From above the

second order the Jones matrix which gives the linear polarization

and linear retardence is



jj2(H,_,#) = _(1)[H 2 P(I,2,0,0) + 2 H p cos(_) P(I,I,I,I)

2
+ p cos(2#) P(I,0,2,2) ].

+ a(2)[(2H_ sin(_) P(I,I,I,I) + 2 sin(2#)P(l,0,2,2)]

The on axis linear polarization and linear retardance of the

SAMEX foroptics are characterized by the term linear defocus.

The instrumental polarization function JJ(H,p,_) for linear

defocus is

JJ(H,p,_) = r[_ 0 + P(l,0,2,2)p2(_icos2 _ - s2sin2_]

= x[_0 + [ai022 + Ja1022)p2(_l cOs2_ - _2 sin2¢)] "

Here, _ is the amplitude transmittance of the system down the

optical axis. It (_) describes the polarization independent

reflection and absorption losses associated with the ray down the

optical axis at normal incidence at all interfaces. P(I,0,2,2)

describes the linear polarization (ai022) and linear retardance

(_I022) associated with the marginal ray.

Maximum coupling occurs when the incident light is

circularly polarized, since circularly polarized light can always

decomposed into equal components of Jr and Jt everywhere inbe

the pupil. The coupling is zero in the center of the pupil

(where the polarization and retardance vanishes) and increases to

a maximum coupling fraction of



re,max(H,1, IP(1,O 2,2)1 2 2= , = ai022 + _2022

at the edge of the pupil. The net fraction of incident circular

polarized light coupled into the orthogonal circular polarized

state is given by the integral over the pupil of

2_ 1
Ic = Ir12 f d, [ _doID2rp(l,0,2,2)l 2

0 0

l':P(1,0,2,2) [2
•

For incident linear or illiptical polarized light, the fraction

of coupled intensity is less because the light is not composed or

equal fractions of eigenstates.

The coupling is minimum for incident linear polarized light,

which will be in one of the eigenpo!arizations along one axis in

the pupil _nd in the orthogonal eigenpolarization along the

orthogonal axis. The fraction of coupled energy will be

calculated assuming an incdient polarization state of horizontal

linear polarized light _ for calculational simplicity, the same

fraction is coupled for any linear polarized incident state. The

polarization state transmitted by an optical system described by

linear polarization defocus for H in is

J(H,p,_) = T(H + P(I,0,2,2) 2(_ cos 2_ - V sin 2_)).



The fraction of incident AH light couplied into V light is equal _

to

2_ i

Ic:_ f d, ;
0 0

2_ 1
_-.L._ f d, f

_" 0 0

IrP(l,0,2,2)l 2

IrP(I,0,2,2)I 2

2 2
_dPIP(I,O,2,2)_ sin2@ I

21T " 1

f sin22,d@ ' f _5d_

0 0

This is the mininmum fraction of energy coupled by linear defocus

aberrations. Since any elliptically polarized incident beam ca_

be written as a sum of linear and circularly polarized light, the

coupling fraction for arbitrarily polarized light lies in the

range.

l'_P(l 0 2 2)I 2 ['_P(1,0,2 2)] 2' ' ' 4 I ( ' •
6 C 3

When unpolarized of circularly polarized light is incident

on the optical system, maximum polarization coupling occurs.

This maximum is the polarization accurracy of a system and is

calculated by the coupling integral) Ic,ma x,

ctmax
1 f / Ic2 2 2= T pupil (I) + c (2) + C (3)Ipdpd@.
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This integral must be evaluated numerically except for some

special cases (see section 3.5). However, an analytic upperbound

on the polarization accurracy can be easily established by using

the triangle inequality

1 f f [((Re[c(1)])
pupil

2 + (Re[c(2)]2 + (Re[c(3])2) 2

+((Ira[c(1)])2 + (Ira[c(2)])2 + (Im[c(3)])2)2]_dpd% .

We can evaluate the upper bound on the polarization accurracy

using the second order polarization aberration expansion

coefficients. The following integration is for the real part of

the aberration coefficients, aluvw

I = _I_I_ [ 2_

1

d_ [ pdp[(al200 H2 + allllHP cos_ + a1022_2cos2#)
0

+ (allllHpsin_ + ai022 2sin2#)2]

2 IH2 2a Ii ai022
_ = [a 2 4 + + ]1200 H . 2 _ "

The corresponding integral, Iimaginary, is obtained by

substituting the imaginary part of the polarization aberration

coefficients, 61uvw ' for aluvw in the above expression. The

upperbound on the polarzation coupling is



.k:
k

_Z

Ic,ma x _ Ireal +

.j-

Iimaginary

2 4
= I,I 2 [al=00 

2 2 _2

+ allll H2 ai022 + _III H2 + --_]2 + _ ÷ 6_200 H4 2

= 1 12[IpCl,2,o,o 12 4 ÷ IP(I,I,I,I) I2H2 ,2,2 " + Ip(1,o,2,2)l ]3

This is the second order upper bound'to the polarization coupling

for systems of weak polarizers.

Hencethe average effect over the image and pupil can be

obtain by integrating over 0, and _. The polarization

accuracy, ap, defined as the maximum fraction of light

(intensity) which can be coupled into orthogonal polarization --

state. The incident polarized state is given by the Jones

vector, _. This vector is effectively rotated by the optical

system and the rotation is given by the Jones matrix, JJ. The

amount of-polarization along the orthogonal state of

polarization, _' of the incident polarization state is given by

the projection of JJ(_) into J',

:_ JJ(_)._'.

This value is given by the square of the second order Jones

matrix and is given in terms of the polarization aberration

coefficients. (For the incident light in the polarization

state loP, then the result of instrumental polarization is to

couple the polarization into the orthogonal state q. The amount
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of coupling is given by

loP _ Io(l-ap)p + apI °

where ap = polarization accuracy.) From the above results, the

polarization accuracy is given in terms of the second order

polarization abberation coefficients P(i,0,2,2), _(,i,i,i,I), and

P(l,2,0,0) :

or

= _ 2 ' _dpd_

= _ i 2 0,2 2)Ap 2p2(I,2,0,0) +--p2(I,I,I,I) + _P (I, ,

where the integrations have been carried out for the squared

terms and estimated for the crossed terms. For the SAMEX

magnetograph design given herein the polarization accuracy value

of

-7

Ap < 1.4 x i0

is obtained for specially selected optical coatings was

obtained. These second order aberration coefficients are given

in Section II-4. The second order coefficients are sufficients

since the next order that contributes is the forth order. The

2
polarization effects would be on the order of (4) .

P


